
MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO - UFERSA
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO - PROPPG

Av. Francisco Mota, 572 – C. Postal 137 – Bairro Pres. Costa e Silva – Mossoró – RN – CEP: 59.625-900 - Tel.: (84)3317-8296/8295 – E.mail: proppg@ufersa.edu.br

REQUERIMENTO E ANEXOS PARA RENOVAÇÃO DE AFASTAMENTOS DE SERVIDORES
DOCENTES DA UFERSA PARA QUALIFICAÇÃO EM INSTITUIÇÕES NACIONAIS OU

ESTRANGEIRAS EM NÍVEL DE PÓS-GRADUAÇÃO STRICTO SENSU

1. PREENCHIDO PELO REQUERENTE

Nome: SAIRO RAONÍ DOS SANTOS
Identidade: 2459204 Órgão Emissor: SSP UF: RN Data de emissão: 07/01/2016
CPF: 014.332.924-32 Data de Nascimento: 01/01/1990 Tel.: (84) 99830-1664
E-mail: sairo.santos@ufersa.edu.br Departamento/Setor: DCETI
Tipo de Afastamento: Integral: (x) Parcial: ()
Tempo de Serviço Averbado para Aposentadoria: () Anos
Início de Exercício no Cargo: 06/05/2013 Total: 7 anos e 10 meses

2. PREENCHIDO PELO REQUERENTE
CURSO: Programa de Pós-graduação em Informática
Nível: Doutorado
Área de concentração: Ciência da Computação
Liberação inicial: Início 09/07/2018 Término: 08/07/2019
Período solicitado para (renovação): Início 09/07/2021 Término: 08/07/2022
Previsão para término do curso: Início: 09/07/2018 Término: 08/07/2022

ANEXAR
 I. Lista de verificação própria disponibilizada pela PROPPG (Check-List); (Anexo I)
 II – Justificativa de seu requerimento; (Anexo II)
 III- Relatório de atividades acadêmicas (Anexo III) (quando se tratar do relatório
referente ao 3º semestre (mestrado) e 5º semestre (doutorado), deverá ser acompanhado do
projeto de dissertação/Tese)
 IV- Relatório de avaliação de desempenho, feito pelo/a orientador/a (Anexo IV)
 V - Declaração de matrícula (Local da pós-graduação) (Anexo V)
 VI- Histórico Escolar (Anexo VII) (Disponível na Página da PROPPG)
VII- Termo de Compromisso dos docentes que assumirão os componentes curriculares do
docente afastado, durante o período de renovação do afastamento, restrito aos casos de
indisponibilidade de vaga para contratação de professor substituto; (Anexo VII)
VIII – Termo de Compromisso, devidamente preenchido e assinado com testemunhas; (Anexo
VIII)
IX - Parecer da chefia imediata (Departamento acadêmico de lotação do requerente); (Anexo
IX)
X - Parecer do Conselho do Centro ao qual o requerente faz parte. (Anexo X).

Data: 11/04/2021

Assinatura do requerente

1/2

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO - UFERSA
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO - PROPPG

Av. Francisco Mota, 572 – C. Postal 137 – Bairro Pres. Costa e Silva – Mossoró – RN – CEP: 59.625-900 - Tel.: (84)3317-8296/8295 – E.mail: proppg@ufersa.edu.br

Check-List – Renovação de Afastamento para qualificação

Nome do solicitante: Sairo Raoní dos Santos

Local da Qualificação:

 No País X
 No exterior

Período solicitado para renovação do afastamento: 09/07/2021 a 08/07/2022

Documentos Anexados – Processo de Renovação: Número da
página

I. Lista de verificação própria disponibilizada pela PROPPG (Check-List); (Anexo I)
II. Justificativa de seu requerimento; (Anexo II)

III. Relatório de atividades acadêmicas (Anexo III)

IV. Relatório de avaliação de desempenho, feito pelo orientador (Anexo IV)

V. Declaração de Matrícula (Anexo V)

VI. Histórico Escolar – Atualizado (Anexo VI)

VII – Termo de Compromisso, devidamente preenchido e assinado com
testemunhas; (Anexo VIII)
VIII. Documentação que formalize a substituição do(a) interessado: (Anexo VIII)

 Utilização de vaga ou disponibilidade de professor substituto a ser
contratado(a)

 Termo de Compromisso dos docentes que assumirão as disciplinas
IX. Parecer da chefia imediata (Departamento acadêmico de lotação do
requerente); (Anexo IX)
X. Parecer do Conselho do Centro ao qual o requerente faz parte. (Anexo X).

2/2

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO - UFERSA
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO - PROPPG

Av. Francisco Mota, 572 – C. Postal 137 – Bairro Pres. Costa e Silva – Mossoró – RN – CEP: 59.625-900 - Tel.: (84)3317-8296/8295 – E.mail: proppg@ufersa.edu.br

JUSTIFICATIVA PARA O AFASTAMENTO

Eu, Sairo Raoní dos Santos, portador do CPF nº 01433292432, RG nº
2459204, matrícula SIAPE nº 2975474, professor do curso de Bacharelado em
Sistemas de Informação da Universidade Federal Rural do Semi-árido –
UFERSA/Campus Angicos, venho por meio deste solicitar a renovação de
afastamento integral de minhas atividades no período de 09 de julho de 2018
a 08 de julho de 2022 para a realização do curso de doutorado no Programa
de Pós-graduação em Informática da Universidade Federal do Paraná (UFPR).
Ressalto que estou classificado no Plano Anual de Qualificação e Formação
Docente 2017/2018 do campus Angicos.

O Programa de Pós-graduação em Informática é oferecido pelo
Departamento de Informática da UFPR e recebeu conceito 5 na sua última
avaliação pela CAPES. Oferece desde 2009 o curso de Doutorado em
Informática, primeiro doutorado público na área de Ciência da Computação
no Paraná, atualmente com mais de 60 teses de doutorado defendidas.

O programa tem como objetivo proporcionar a seus alunos uma
formação de forte conteúdo conceitual, sem desprezar aspectos práticos da
informática. O corpo discente é motivado para o trabalho de pesquisa, no
qual a visão crítica predomina sobre o aprendizado de técnicas e
ferramentas.

Fui aprovado em março de 2018 no programa na área de Redes e
Sistemas Distribuídos. Considerando os benefícios para a instituição e para a
carreira como professor e pesquisador, enfatizo a importância do
afastamento para a realização do doutorado.

Data: 11 de abril de 2021

Assinatura do requerente

3/2

Machine Learning Migration for
Efficient Near-Data Processing

Aline S. Cordeiro† Sairo R. dos Santos†‡ Francis B. Moreira† Paulo C. Santos§ Luigi Carro§ Marco A. Z. Alves†
†Department of Informatics – Federal University of Paraná – Curitiba, Brazil

‡Department of Exact Sciences and Information Technology – Federal Rural University of Semi-arid – Angicos, Brazil
§Informatics Institute – Federal University of Rio Grande do Sul – Porto Alegre, Brazil

Email:†{ascordeiro, fbm, mazalves}@inf.ufpr.br ‡{sairo.santos@ufersa.edu.br} §{pcssjunior, carro}@inf.ufrgs.br

Abstract—Machine Learning (ML) rises as a highly useful
tool to analyze the vast amount of data generated in every
field of science nowadays. Simultaneously, data movement inside
computer systems gains more focus due to its high impact on
time and energy consumption. In this context, the Near-Data
Processing (NDP) architectures emerged as a prominent solution
to increasing data by drastically reducing the required amount
of data movement. For NDP, we see three main approaches,
Application-Specific Integrated Circuits (ASICs), full Central
Processing Units (CPUs) and Graphics Processing Units (GPUs),
or vector units integration. However, previous work considered
only ASICs, CPUs and GPUs when executing ML algorithms
inside the memory. In this paper, we present an approach to
execute ML algorithms near-data, using a general-purpose vector
architecture and applying near-data parallelism to kernels from
KNN, MLP, and CNN algorithms. To facilitate this process, we
also present an NDP intrinsics library to ease the evaluation and
debugging tasks. Our results show speedups up to 10× for KNN,
11× for MLP, and 3× for convolution when processing near-data
compared to a high-performance x86 baseline.

Index Terms—Near-Data Processing; Vector Processing; Ma-
chine Learning.

I. INTRODUCTION

In the last years, Machine Learning (ML) has gained pop-
ularity to analyze the massive amounts of data generated by
digital systems’ growth use [1]–[5]. Simultaneously, general-
purpose computers and their ever-increasing performance
present severe bottlenecks in terms of the execution time of
ML algorithms when dealing with real-world size problems
[6]. In order to mitigate performance problems, ML experts are
using accelerators such as Graphics Processing Units (GPUs),
Field-Programmable Gate Arrays (FPGAs) and Application-
Specific Integrated Circuits (ASICs) [7]–[9]. However, the data
movement between accelerator’s integrated memory (GDDR-
x, HBM, or HMC) and processor is still a bottleneck, also
known as memory-wall [7]. The memory-wall limitation is
inherent to contemporary processor designs, and although
cache hierarchy can mitigate the performance drawbacks, in
terms of energy and latency it is not sufficient [10]–[12].

Data movement consumes as high as 60% of the total
system energy [6]. Here, Near-Data Processing (NDP) has
emerged as a solution for the memory-wall problem, with

This work was partially supported by the Serrapilheira Institute (grant
number Serra-1709-16621), CAPES and CNPq (Brazilian Government).

the idea of integrating processor and memory in the same
chip [13], [14]. The most common NDP proposals rely on
ASIC or full Central Processing Units (CPUs) and GPUs [15]–
[17]. Nevertheless, prominent designs, based on simple near-
data vector units [18]–[21], enable the highest energy effi-
ciency while meeting the required constraints regarding the
area and power [22]. Therefore, our case study is inspired
by the HMC Instruction Vector Extensions (HIVE) [18] to
provide a programming and simulation environment for NDP.

In this paper, we present the benefits of migrating three
well-known ML kernels, namely K-Nearest Neighbors (KNN),
Multi-layer Perceptron (MLP), and Convolutional Neural
Network (CNN), to a NDP design capable of large-vector
operations which is named Vector-In-Memory Architecture
(VIMA). By adopting VIMA we are greatly reducing data
movement between host processors and main memory, hence
increasing overall efficiency and performance. To allow this
migration, we also developed Intrinsics-VIMA, a vector-
designed C/C++ library extension [23]. Intrinsics-VIMA facil-
itates the writing of codes for VIMA and similar Processing-
In-Memory (PIM) architectures, enabling the simulation and
evaluation of new algorithms with reduced programming ef-
fort. Our main contributions are the following:

• We extend and use an NDP intrinsics library that supports
validation of NDP architectures based on large vectors.

• We provide insights and show benefits on migrating ML
algorithms to a vector-based NDP architecture.

Most ML algorithms are split into train and inference phases,
two computation-intensive tasks. The training is performed
once and relies on latency to execute many operations over
a massive set of training instances to define the model
parameters. The inference is performed multiple times by
multiple products, and it relies on high throughput to classify
a stream of instances, representing real-world applications. In
this paper, we focus only on the inference phase.

Comparing the x86-only approach to the NDP execution
we show improvements on execution time up to 10× for
KNN, 11× for MLP, and 3× for convolution. Additionally,
we reduce energy consumption by up to 7× for KNN, ∼ 8×
for MLP and 2× for convolution.

II. RELATED WORK

In this section, we discuss related work on NDP for ML
execution. We begin by describing efforts that rely on using
full cores, such as RISC-V, ARM, and Accelerated Processing
Units (APUs) attached to a 3D-stacked architecture to enhance
performance. NeuroStream is a NDP platform that runs Deep
Neural Networks (DNNs) with large inputs and arbitrary
filter sizes [24]. Based on NeuroStream, Network Training
Accelerator (NTX) implements an acceleration engine that
trains state-of-the-art Deep Convolutional Neural Networks
(DCNNs) [25]. Both implement a module composed of RISC-
V cores with local cache, Direct Memory Access (DMA),
and specific cores. The modules connect to the crossbar
switch of every 3D-stacked memory, enabling the execution
of vector instructions. Tesseract accelerates large-scale graph
processing using an Hybrid Memory Cube (HMC) module
integrated to a single-issue in-order ARM core [16]. Another
NDP architecture was used for in-memory analytics frame-
works [26], where the authors employ a set of ARM cores
combined with a Translation Look-aside Buffers (TLBs) and
virtual memory that communicate with each other through
a vault router. The Millipede is a NDP architecture for Big
data Machine Learning Analytics (BMLA), that implements
its processors in the logic layer of 3D-stacked memories.
These processors have a local memory, register file, pipeline,
cache, and prefetcher buffers [27]. Another possible approach
is to implement programmable ARM-based cores in the HMC
logic layer [28] so that some functions can be offloaded
to these cores. The VIMA vector module also attaches to
the crossbar switch but has lower complexity and cost as it
requires fewer components to improve system performance
for a ML application.

Another proposal analyzed aspects of a CNN to develop
a PIM architecture where simple cores are attached to every
vault, and each core has a data controller to allow communi-
cation [29]. TETRIS and NeuralHMC are 3D-stacked Neural
Network (NN) accelerators [15], [30]. Both connect hundreds
of Processing Elements (PEs) with Network-on-Chip (NoC)
technology. VIMA also has lower complexity and cost than
these, as it does not rely on communication between vaults or
cores to achieve high performance or parallelism.

MAssively Parallel Learning/Classification Engine
(MAPLE) [31] uses multi-core near-data for parallel learning
and classification algorithms and a tool that automatically
maps application kernels to the accelerator hardware. They
implemented an architecture with a set of cores to solve
MapReduce operations. MAPLE uses these processing cores
to achieve parallelism, and two separate modules are applied
to solve the entire operation. The cores include processing
elements like registers, selectors, a vector Functional Unit
(FU), and local storage. Xu et al.’s proposal [32] focuses on
parallelizing CNNs on a system with multiple NDP devices.
A host CPU is connected to a 3D-stacked memory and both
host and logic layer are APUs, which consists of CPU and
GPU cores on the same silicon die. VIMA, on the other hand,

uses a straightforward module, enabling vector operation in
an energy-efficient way.

Another approach is the addition of reconfigurable acceler-
ators to the logic layer of 3D-memories. Oliveira et al. [20]
describe Neuron In-Memory (NIM), a module compound by
a register bank, complex FUs, and a sequencer that simulates
biologically meaningful NN of considerable sizes. We also
observed proposals that dynamically adjusts the number of
active FUs on demand [33]. These related proposals require
adding one module per vault, making them more expensive
than VIMA, which is attached only to the crossbar switch and
allows communication to every vault.

Finally, some proposals consider a conventional Dynamic
Random Access Memory (DRAM) device with elementary
logic or boolean circuit into DRAM cells (so-called Processing
In-Memory), which is not an expensive task. However, com-
pared to VIMA, this solution is a complex and error-prone
task to the programmer. Moreover, the set of implementable
instructions is limited [34]–[39].

Table I summarizes the related work regarding NDP and
PIM applied to ML algorithms.

TABLE I: Summary of correlated papers characteristics.

Paper General/Specific
Purpose

Vector/
Scalar

Near-/In-
memory

Full
Cores

[27], [31], [33] General Vector Near-memory N
[20], [36] General Vector In-memory 1

[16], [26], [32] General Scalar Near-memory N
[37] Specific Vector In-memory 1

[15], [24] Specific Vector Near-memory N
[34], [35], [38] Specific Scalar In-memory 1

[25], [28] Specific Scalar Near-memory N
[29], [30] Specific Scalar Near-memory 0

Our Proposal General Vector Near-memory 0

III. BACKGROUND ON NEAR DATA PROCESSING

Near-Data Processing (NDP) dates back to the 1990s [14],
[40], when the industry was unable to integrate DRAM and
logic cells on the same die. However, with the advent of
3D integration, NDP has reemerged as a viable solution. 3D-
stacked memories are generally compound of multiple stacked
layers (e.g., eight layers) of DRAMs plus a logic layer on the
base. This logic layer enables the integration of a processing
logic element near the memory banks. The DRAM layers are
usually logically partitioned (e.g., in up to 32 vaults), where
each partition has many independent DRAM banks (from all
the eight layers). These logical partitions distributed among
DRAM layers are connected through Through-Silicon Vias
(TSVs) [41]. Compared to typical Double Data Rate (DDR)
memories, 3D memories can achieve higher bandwidth and
better energy efficiency [42], while reaching up to 320 GB/s
[43], [44].

NDP systems can be implemented due to 3D integration
technology by adding processing capabilities within the logic
layer. Thereby, NDP can mitigate data movement between
memory and processor because it enables processing in the
same chip where data is stored. NDP architecture improves
performance and energy efficiency as it grants high parallelism

and high bandwidth [45]–[47], ensuring low average latency
even when there is high pressure in memory. Therefore, such
architectures benefit streaming and parallel applications, with
coalescent memory access patterns and low data reuse.

In this paper, as a target NDP architecture, we focus on a
model that provides general-purpose processing (e.g., in con-
trast to ASIC) and does not require a full processor integration
near data. For this, we adopted the HIVE [18] architecture.
It allows the execution of large vector instructions that obtain
data from the independent memory vaults inside a 3D-memory
in a parallel fashion. Besides, it includes vector extensions to
the processor Instruction Set Architecture (ISA) to control the
near-data vector units, not requiring any processor front-end
to be implemented inside the memory.

3D Stacked MemoryProcessor
Core

ALUFetch Decode
Rename
Dispatch

Write
Back

Memory Order Buffer

Cache
Hierarchy

Last Level
Cache

VIMA instruction VIMA status

Vault 0
logic

Vault 1
logic

Vault 31
logic

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

...

Crossbar switch

VIMA

Vector
Op.

L1 Cache

DRAM
Layers

Logic
Layer

Reorder Buffer

...

Fig. 1: 3D-stacked memory module with the VIMA architec-
ture.

For our experiments, we used VIMA, a modified version of
HIVE. The main difference is that VIMA replaces the register
bank (from HIVE) with a same-sized (i.e., 64 KB) data cache
memory, which maintains high performance while providing
transparency and high flexibility for programmers. Both HIVE
and VIMA support all ARM NEON Integer and Floating-point
(FP) instructions and operate over vectors of 8 KB of data,
which fetch data over the 32 channels (vaults) in parallel.
Figure 1 present an overview of the NDP considered in this
paper. For more details please refer to HIVE’s paper [18].

NDP can mitigate the memory-wall problem in contrast to
CPU, GPU, and FPGA, which all require time and energy
inefficient off-die (or off-chip) data transfers, by eliminating
data movements from the memory hierarchy. Thus, in the
remainder of this paper, we migrate three well-known ML
classification algorithms to exploit this emerging architecture.

IV. PROPOSED INTRINSICS-VIMA LIBRARY

In this section, we present the Intrinsics-VIMA, a library we
develop intending to facilitate the development of programs for
NDP architectures using C/C++ language.

Intrinsics-VIMA supports trace generation for simulation
and allows vector operation with vectors of 8 KB formed
by multiple integers, single- or double-precision floating-point
elements. This library is based on Intel and ARM Intrinsics
[48], a Single Instruction Multiple Data (SIMD) library that
embeds its internal assembly code directly in the compiler to
optimize execution [49].

The main idea for Intrinsics-VIMA is to provide vector
extensions in the ISA. Once C/C++ code is prepared using
Intrinsics-VIMA, it can be debugged and executed on any
architecture. However, to evaluate new NDP architectures, we
use a trace generator to transform each intrinsic call into a
specific NDP instruction supported by the simulator. Thus, it
is possible to write code for non-existing architectures and
ensure its correctness [23].

Code 1: Intrinsics-VIMA routine call for vector sum.
uint32_t vima_size = 2048;

// Allocate the vectors A, B (sources) and C (result)
__v32f *A = (__v32f*)malloc(sizeof(__v32f)* vima_size* x);
__v32f *B = (__v32f*)malloc(sizeof(__v32f)* vima_size* x);
__v32f *C = (__v32f*)malloc(sizeof(__v32f)* vima_size* x);

// Initialize the memory location
<...>

// Perform the vector sum: C[i] = A[i] + B[i]
for (int i = 0; i < vima_size * x; i += vima_size) {

_vim2K_fadds(&A[i], &B[i], &C[i]);
}

Based on this open-source Intrinsics library for NDP [23],
we developed Intrinsics-VIMA, which is the first library to
implement vector instructions for an NDP architecture. VIMA
instructions operate over 8 KB and allow (un)signed integer
and floating-point single- and double-precision operations.
Thus, we consider vectors with 1024 or 2048 elements, for
8 B or 4 B elements, respectively. To use intrinsics-VIMA,
we must allocate vectors with sizes multiple of 1024 or 2048,
so we can iterate on these vectors with this stride length.
Code 1 present the implementation of a vector sum example
using Intrinsics-VIMA. Code 2 show the implementation of
one of our Intrinsics-VIMA routine. Previous work only
considered scalar processing near-data (based on HMC ISA
proposal) [23], and now we can evaluate vector operands used
on VIMA, originally inspired on the NEON ISA.

Code 2: Intrinsics-VIMA routine example.
// This routine can be fully executed in any architecture
// Our simulator replaces this routine with a VIMA instr.
void *_vim2K_fadds(__v32f *a, __v32f *b, __v32f *c) {

for (int i = 0; i < vima_size; ++i) {
c[i] = a[i] + b[i];

}
return EXIT_SUCCESS;

}

V. MIGRATING MACHINE LEARNING USING
INTRINSICS-VIMA

ML is a sub-field of Artificial Intelligence (AI), and its
algorithms compute and analyze datasets to recognize patterns
in data and classify or predict them. Commonly we split ML
algorithms into training and inference phases. Considering su-
pervised algorithms, developers perform the training, and once
it is validated and ready, these trained values are embedded
into multiple systems. It can be executed in a set of different
devices, even in embedded systems with limited hardware
resources [50]–[52]

Both phases are computation-intensive tasks and may
present different challenges. The training depends on massive
operations over a massive set of instances during multiple
epochs to define the model parameters. Meanwhile, inference
relies on high throughput to classify a stream of instances,
representing real-time applications. Therefore, for simplicity,
we choose to focus on this inference phase only in this paper.

In the following subsection, we describe the implementation
of three algorithms widely adopted in ML, also showing the
method to vectorize each of them. We choose a convolution
kernel (commonly used in CNNs), MLP and KNN algorithms.

Besides, we use VIMA vectors of 8 KB, allowing us
to operate over 2048 single-precision values with a single
instruction. Although HIVE and VIMA instructions operates
over 8 KB vectors. The physical implementation of these
architectures can use less vector units in a pipeline manner
to still provide high performance while low area usage [18].

A. Convolution

We start explaining the convolution code due to its sim-
plicity, making it easy to understand the vector process.
Convolution codes are a class of algorithms that has numerous
applications in science. They compute values based on a
fixed pattern involving each element of an array and several
neighbors on a 2D or 3D arrangement [53]. Two of the
most common convolution patterns are the Von Neumann
neighborhood and the Moore neighborhood patterns. The Von
Neumann pattern includes the four neighbors in the cardinal
directions of an element. The computation of each element is
independent, making convolution codes good candidates for
parallel processing. However, they often become memory bot-
tlenecks due to the data access patterns they present potentially
having poor locality [53].

Code 3: Von Neumann convolution code in C.
for (int i = ColSize; i < max_elem; i++) {

VecB[i] = VecA[i]; // Center Elem.
VecB[i] = VecB[i] + VecA[i - ColSize]; // Upper Elem.
VecB[i] = VecB[i] + VecA[i + ColSize]; // Lower Elem.
VecB[i] = VecB[i] + VecA[i - 1]; //Left Elem.
VecB[i] = VecB[i] + VecA[i + 1]; //Right Elem.
VecB[i] = VecB[i] * constK;

}

For the implementation of a naive convolution code using
VIMA, we adopted the Von Neumann pattern with a range
equals to 1, as shown in dark gray in Figure 2. The algorithm
sums all five elements in the convolution, then multiplies the
result by a constant and stores the result in a different matrix.
Code 3 shows an example in C, considering a matrix in a
continuous array arrangement. The algorithm stores the result
in the corresponding element of a new matrix.

Figure 2 illustrates the convolution. For every loop, elements
from three consecutive lines of the matrix, as pictured in
dark gray, are loaded into VIMA vectors and operated over.
Code 4 shows the implementation using Intrinsics-VIMA. Our
implementation is considering a convolution that eliminates
the matrix borders during execution.

Fig. 2: Convolution pattern used for VIMA.

Code 4: Von Neumann convolution using Intrinsics-VIMA.
for (int i = ColSize; i < max_elem; i += vec_size) {

_vim2K_fmovs(&VecA[i], &VecB[i]);
_vim2K_fadds(&VecB[i], &VecA[i-ColSize], &VecB[i]);
_vim2K_fadds(&VecB[i], &VecA[i+ColSize], &VecB[i]);
_vim2K_fadds(&VecB[i], &VecA[i+1], &VecB[i]);
_vim2K_fadds(&VecB[i], &VecA[i-1], &VecB[i]);
_vim2K_fmuls(&VecB[i], &VconstK[i], &VecB[i]);

}

B. K-nearest Neighbors

KNN is an instance-based classifier. It searches for the k
minimal distances between training and test points in an n-
dimensional space. Here we use the Euclidean method to
calculate the instances’ distances. An n-dimensional array of
features represents each instance. Each array position corre-
sponds to a different feature, which also corresponds to a
weight. The higher the value, the heavier it is [54].

In the KNN algorithm, we must access the training data
in memory to classify every test instance. Depending on the
number of features an instance presents, it can be smaller
than a VIMA vector, so different instances can be stored
consecutively in one VIMA vector as depicted in Figure 3.
Meanwhile, if the instance size is equal or larger than a VIMA
vector, it will occupy at least one VIMA vector.

instance 0 instance 1 instance 2 ... instance 63

0 2047

Fig. 3: E.g., full utilization of a VIMA vector with training
and test instances. Here, we could allocate 64 instances with
32 features inside the vector of 8 KB.

We used an input set labeled with two classes: 0 (negative)
and 1 (positive). We load the labels of the training instances
into separated vectors. As we load the full training set in
memory, a vector with a size multiple of the VIMA vector
size must allocate all the training labels. Thus, if we store
a set of 8192 training instances using 4× VIMA vectors of
8 KB, each with 2048 positions to store the 8192 labels, shown
in Figure 4.instance 0 instance 1 instance 2 ... instance 63

0 2047

inst 0 inst 1 inst 2 inst 3 ... inst 8191

0 262143

0 1 1 0 ... 1

0 8191

Label vector

Fig. 4: VIMA vectors with training instances with 32 features
and the respective labels.

With all training instances stored in memory, the next step
is to calculate the Euclidean distance method, represented by
the following simplified function:

d ≡

√√√√ n∑
i=1

(te(xi)− tr(xi))2

Where tr refers to the training instance and te to the test
instance. We use the following Intrinsics-VIMA routines:

vim2K fsubs() to subtract the values of the training and test
instances; vim2K fmuls() to multiply and raise the resulting
value to the power of two; vim2K fcums() to sum all results
to find out the distance between these instances and finally
calculates the square root of this value. Fortunately, we can
vectorize most of these operations with Intrinsics-VIMA.

Although a VIMA vector can receive more than one in-
stance, depending on the number of features, we choose to
work with a single instance at a time. To do so, we apply
a mask in training and test vectors to obtain just a single
instance. For instance, considering test and training instances
with 32 features, the mask will set the first 32 positions of
a VIMA vector to 1, while the rest of the vector is full of
zeros, as depicted in Figure 5. If the instances size are equal
or greater than the VIMA vector, this transformation will not
be necessary. Isolating one instance per VIMA vector enables
executing all the operations mentioned above (subtraction,
multiplication and accumulated sum) in a simpler way with
better data reuse.

instance 0 instance 1 instance 2 ... instance 63

0 2047

inst 0 inst 1 inst 2 inst 3 ... inst 8191

0 262143

0 1 1 0 ... 1

0 8191

Label vector

1111111...1 0000000...0 0000000...0 0000000...0 0000000...0

instance 0 instance 1 instance 2 ... instance 63

0 31 2047

Fig. 5: Operation to apply a mask over a VIMA vector of
8 KB with instances representing 32 features.

We store the accumulated sums between each test instance
and the set of training instances (calculated with VIMA
routines) in a different vector in memory. Afterward, the
x86 square root instruction will be applied, resulting in the
Euclidean Distances. One vector for each test instance will
store several Euclidean Distances. Each vector has size equals
to the number of training instances. Finally, to classify an
instance, all its distances are paired with the label vector to
find the k lowest distances. In this phase, we are interested in
the labels of the k lowest values. The label with the majority
among these k lowest values is the label assigned to the
test instance. This final step does not use Intrinsics-VIMA
functions.

C. Multi-layer Perceptron

The MLP algorithm is a supervised learning technique that
provides a practical method for learning from given examples.
It is an Artificial Neural Network (ANN) that consists of
one input layer, at least one hidden layer, and one output
layer. Each layer is formed by neurons that apply a series
of non-linear transformations on features data to classify the
instance [54]. As explained in KNN algorithm, we are using
VIMA vectors of 8 KB and floating-point single precision,
which gives us vectors with 2048 positions. Additionally, the

number of neurons in the input layer is the number of features
presented on the instances, while the hidden layer contains half
of it. Due to its responsibility in defining relations between
relevant features, it must have a balanced amount of neurons
compared to the number of analyzed features in an instance. If
the hidden layer presents too few or too many neurons it may
not identify properly the relevant features or it may consider
every feature as being relevant, resulting in accuracy loss
during classification. The output layer has only two neurons
to classify instances as either positive or negative, as depicted
in Figure 6. In this work, we are considering that the NN is
already trained, doing just the inference of the instances as the
weights were trained and disregarding any other parameter of
training or classification.

i4

i2

i3

h1

h2

h0

o0

o1

Input
Layer

Hidden
Layer

Output
Layer

i5

i1

i0 w00

w20

w30

w40

w10

w50

w’00

w’10

w’20

bias
bias

b0

b1

b2

b’0

b’1

Fig. 6: Representation of an ANN.

If the instances are smaller than the VIMA vector, we
compute a single instance at a time, as explained for the KNN
algorithm. If the instances’ size is equal to or greater than the
VIMA vector, this transformation will not be necessary.

To obtain the hidden layer’s activation values, first, we
must use the Intrinsics-VIMA function vim2K fmuls() to
multiply the input features and weight values (wxy). Then, we
use the function vim2K fcums() to accumulate the resultant
values and store them in the vector of the hidden layer
activation values. The algorithm repeats this operation for each
neuron in the hidden layer. This hidden layer vector will store
the activation values of all the instances sequentially. After
calculating all the instances, we add the bias vector for all
the neurons in the layer (the bias is a value to be added
or subtracted to an activation value factor to adjust it and
reduce errors) using the function vim2K fadds(). Finally, we
use the function vim2K fmaxs() to apply the the activation
function. In this work, we are considering Rectified Linear
Unit (ReLU) as an activation function. Thus the hidden layer
vector is operated with a zeroed vector, and every negative
value is replaced by zero.

Similar to the input layer computation, we repeat the same
steps for the hidden layer present in the MLP. Considering the
varying number of weights for each layer, we must use specific
masks to operate with each neuron separately, as depicted in
Figure 7.

Since we consider only two types of labels, negative and
positive, the output layer will have two neurons. Thus, two

11111111 00000000 00000000 00000000 00000000

weight set 0 weight set 1 weight set 2 weight set 3 XXXXX...X

0 7 15 23 31 2047

weight set 0 00000000 00000000 ... 00000000

instance 0 00000000 00000000 ... 00000000

Fig. 7: Example of a VIMA vector with four sets of weights
for instances representing 8 features.

sets of weights (w′xy) are defined, both sets with the same size
as the hidden layer and referring to the connections between
the hidden and output layers. In the last, there are just two
activation values and a Softmax activation function [55] must
be applied to them to transform these values in probabilities.
The higher probability corresponds to the label most likely to
classify the instance. This final step does not use Intrinsics-
VIMA functions.

VI. EXPERIMENTAL EVALUATION OF VIMA

This section presents the methodology and the simulation
results for our ML kernel implementations.

A. Methodology and Simulation Setup

Computer architects often use simulators when evaluating
new architectures. Compared to analytical models, simula-
tors are more accurate, considering the high complexity of
computer systems. Besides, simulators are faster and cheaper
to implement new models if compared to prototyping. To
evaluate our proposal, we adopted SiNUCA [56], a open-
source cycle-accurate simulator. SiNUCA enables us to model
our custom smart-memory architecture with FUs, a cache
memory, and configurable operation size. Table II shows the
main parameters used for our model.

TABLE II: Baseline and VIMA system configuration.
OoO Execution Cores 32 cores @ 2.0 GHz, 32 nm; Power: 6W/core;
6-wide issue; Buffers: 18-entry fetch, 28-entry decode; 168-entry ROB;
MOB entries: 64-read, 36-write; 2-load, 1-store units (1-1 cycle);
3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);
1-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle);
1 branch per fetch; Branch predictor: Two-level GAs. 4096 entry BTB;
L1 Data + Inst. Cache 64 KB, 8-way, 2-cycle; 64 B line; LRU policy;
Dynamic energy: 194pJ per line access; Static power: 30mW;
L2 Cache 256 KB, 8-way, 10-cycle; 64 B line; LRU policy;
Dynamic energy: 340pJ per line access; Static power: 130mW;
LLC Cache 16 MB, 16-way, 22-cycle; 64 B line; LRU policy;
Dynamic energy: 3.01nJ per line access; Static power: 7W;
3D Stacked Mem. 32 vaults, 8 DRAM banks/vault, 256 B row buffer;
4 GB; DRAM@1666 MHz; 4-links@8 GHz; Inst. lat. 1 CPU cycle
8 B burst width at 2.5:1 core-to-bus freq. ratio; Closed-row policy;
DRAM: CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);
Avg. energy per access: x86:10.8pJ/bit; VIMA:4.8pJ/bit; Static power 4W;
VIMA Processing Logic Operation frequency: 1 GHz; Power: 3.2W;
256 int. units: alu, mul. and div. (8-12-28 cycles for 8 KB pipelined)
256 fp. units: alu, mul. and div. (13-13-28 cycle for 8 KB pipelined);
VIMA cache: 64 KB (8 lines), fully assoc., 2-cycle (1-tag, 1-per data);
Dynamic energy: 194pJ per line access; Static power: 134mW;

x86 baseline: We inspired our baseline architecture in the
Intel Sandy Bridge processor micro-architecture and referred

to as x86. We modeled the ISA with AVX-512 instruction set
capabilities besides all x86 ISA instructions. Furthermore, we
use a 3D-stacked memory as the main memory.
VIMA architectures: To provide two scenarios for compar-
ison, we propose using near-data operations over vectors of
8 KB. In this approach, we implemented the NEON ISA near-
data. The x86 processor triggers these VIMA instructions.
VIMA 8 KB mechanism and its 64 KB cache memory are
estimated as 1.5W at 1 GHz with 32nm technological node.
Benchmark: In our experiments, we evaluate KNN, MLP and
convolution kernels. We used 4096 instances for MLP, 32768
training instances, 256 test instances, and 9 neighbors for
KNN, varying the number of features for both applications (32,
64, 128, 256, 512, 1024, 2048, and 4096). For the convolution
benchmark, we vary matrix dimensions (512×512, 724×724,
1024 × 1024, 1448 × 1448, 2048 × 2048, 2896 × 2896,
4096×4096, 5794×5794, 8192×8192, and 11648×11648).
Our evaluations focus on architecture efficiency, not on the
accuracy of each classification algorithm. Thus, the results will
be shown in terms of speedup and energy savings.

In order to evaluate the energy consumption in our models,
similar to other related work, we used CACTI and Multicore
Power, Area, and Timing (McPAT) tools. Both were used to
measure the cost of hardware on power, area, and timing
parameters depending on their circuitry characteristics [57].

B. Execution Time Results

Figure 8(a) presents speedup results for the convolution al-
gorithm described on Code 4 over matrices from size 512×512
to 11648 × 11648. The speedup for the convolution is not
linear. It depends on the vector fill rate and the x86 baseline
implementation time, which varies whenever the cache is
more or less useful. We evaluated with the larger matrix of
11648× 11648 that occupies 512 MB of memory, which still
makes fair usage of the cache hierarchy of x86. Nevertheless,
sizes greater than 16 MB slightly better utilizes the VIMA
vectors, achieving thus the maximum performance.

Figure 8(b) presents speedup results for MLP and KNN
algorithms. Both algorithms start to present better results for
VIMA when increasing memory usage. MLP and KNN exceed
cache size with 512 and 256 features, respectively, using
32 MB of memory. When the memory footprint exceeds x86
cache memory size, the Advanced Vector Extensions (AVX)
implementation starts to spend more time and energy in cache
line replacements in comparison with VIMA. However, while
it does not reaches this memory footprint, there is no speedup
over the baseline, as we can observe for MLP with up to 256
features and for KNN with up to 128 features. Nevertheless,
both algorithms have different behavior. Thus the speedup is
more evident in KNN due to its quadratic complexity. On the
other hand, MLP has linear complexity, achieving better results
only when evaluating with a more significant amount of data,
for example, with 4096 features (although using fewer features
it presents a slow down up to 5× compared to the baseline).

1 2 4 8 16 32 64 128 256 512
−4

−2

0

2

4

6

0

−
1
.0
1
×

1
.6
6
×

1
.0
6
×

1
.2
4
×

1
.9
0
× 3
.1
9
×

1
.7
3
×

1
.9
2
×

1
.7
4
× 2
.8
7
×

Matrix Size (MB)

Sp
ee

du
p

(a) Convolution

32 64 128 256 512 1K 2K 4K
−12

−8

−4

0

4

8

12

16

0

−
3
.3
5
×

−
4
.1
5
×

−
2
.5
8
×

−
3
.0
1
×

−
2
.4
6
×

−
1
.6
8
×

−
1
.9
6
×

1
.3
0
×

2
.0
2
×

2
.6
6
×

1
1
.3
×

2
.4
6
×

4
.4
5
×

7
.1
2
×

9
.3
5
×

1
0
.5
2
×

Number of Features

MLP
KNN

(b) KNN and MLP

Fig. 8: Speedup results over baseline for (a) Convolution varying matrix size, (b) MLP and KNN varying number of features.

1 2 4 8 16 32 64 128 256 512
−6

−4

−2

0

2

4

6

0

−
2
.3
3
×

−
1
.2
5
×

−
1
.0
8
×

1
.2
2
×

1
.4
5
×

2
.3
4
×

1
.3
2
×

1
.4
5
×

1
.3
3
×

2
.1
0
×

Matrix Size

E
ne

rg
y

Sa
vi

ng
s

(a) Convolution

32 64 128 256 512 1K 2K 4K

−12

−8

−4

0

4

8

12

0

−
4
.9
7
×

−
6
.2
9
×

−
3
.8
9
×

−
4
.5
6
×

−
3
.7
2
×

−
2
.5
2
×

−
2
.9
5
×

−
1
.1
2
×

1
.4
0
×

1
.8
9
×

7
.9
5
×

1
.6
3
×

3
.0
0
×

4
.8
7
×

6
.5
4
×

7
.3
3
×

Number of Features

MLP
KNN

(b) KNN

Fig. 9: Energy savings of VIMA over baseline for (a) Convolution varying matrix size, (b) MLP and KNN varying number of
features and neighbors.

C. Energy Results

Figure 9(a) presents the energy efficiency for the convolu-
tion, which follows the speedup pattern. The gains are higher
when a matrix row fits perfectly into a VIMA vector, spending
just half of the energy compared to the baseline.

For MLP and KNN algorithms, depicted in Figure 9(b), the
energy savings are proportional to the speedup. It is possible to
reduce in 7× the energy consumption using VIMA compared
to the baseline. However, there are no energy savings for MLP
and KNN with lower number of features, i.e. until 512 and
128, respectively. As we can observe in the graphic, VIMA
can consume up to 6× more energy than AVX in these cases.

The energy savings achieved by VIMA depends directly on
memory usage and algorithm behavior. Whenever the memory
footprint fits inside the x86 cache memory, the processor
presents higher efficiency. In contrast, VIMA consumes less
due to faster execution and less data movement. This result
reinforces the concept that NDP must be seen as an accelerator
for applications with data-stream behavior and low data reuse.

VII. CONCLUSIONS AND FINAL CONSIDERATIONS

Considering the memory-wall problem, several approaches
to NDP are emerging in the last years. Concurrently, ML
algorithms are getting higher importance when analyzing large
volumes of data. In this paper, we propose the migration of
ML kernels to a vector execution near-data system to achieve
high speedup with low energy consumption.

Using our Intrinsics-VIMA library extension, we could
achieve a speedup of up to 10× for KNN, 11× for MLP, and

3× for convolution. Meanwhile, we obtained energy savings
of 7× for KNN, ∼ 8× for MLP, and 2× for convolution
compared to a baseline line system with x86.

Although we emphasize ML algorithms, other programs that
rely on similar data access behavior shall benefit from VIMA.
In general, it is expected a higher performance for algorithms
that have streaming and coalescent data access behavior with
low data reuse and a memory footprint bigger than the cache
memory hierarchy capacity

As future work, we consider extending the migration to
other ML algorithms, including its training phase and improv-
ing the Intrinsics-VIMA library to achieve better performance.

All the source code for our VIMA architecture simulation,
the ML algorithms, and the Intrinsics-VIMA library are freely
available in our on-line repositories12.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012.

[2] A. Rakotomamonjy, “Variable selection using svm-based criteria,” Jour-
nal of machine learning research, vol. 3, no. Mar, 2003.

[3] M. W. Gardner and S. Dorling, “Artificial neural networks (the multi-
layer perceptron)—a review of applications in the atmospheric sciences,”
Atmospheric environment, vol. 32, no. 14-15, 1998.

[4] L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, 2009.
[5] T. G. Dietterich, “Ensemble methods in machine learning,” in Int.

workshop on multiple classifier systems, 2000.

1https://github.com/mazalves
2https://github.com/ascordeiro

[6] A. Boroumand, S. Ghose et al., “Google workloads for consumer
devices: Mitigating data movement bottlenecks,” in Int. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2018.

[7] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
1995.

[8] E. Nurvitadhi, J. Sim et al., “Accelerating recurrent neural networks
in analytics servers: Comparison of fpga, cpu, gpu, and asic,” in
2016 26th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2016, pp. 1–4.

[9] K. Kara, D. Alistarh et al., “Fpga-accelerated dense linear machine
learning: A precision-convergence trade-off,” in 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2017, pp. 160–167.

[10] M. Hashemi, E. Ebrahimi et al., “Accelerating dependent cache misses
with an enhanced memory controller,” in Int. Symp. on Computer
Architecture (ISCA), 2016.

[11] M. K. Qureshi, M. A. Suleman, and Y. N. Patt, “Line distillation:
Increasing cache capacity by filtering unused words in cache lines,” in
Int. Symp. on High Performance Computer Architecture (HPCA), 2007.

[12] M. K. Qureshi, A. Jaleel et al., “Adaptive insertion policies for high
performance caching,” ACM SIGARCH Computer Architecture News,
vol. 35, no. 2, 2007.

[13] A. Nowatzyk, F. Pong, and A. Saulsbury, “Missing the memory wall:
The case for processor/memory integration,” in Int. Symp. on Computer
Architecture (ISCA), 1996.

[14] D. Patterson, T. Anderson et al., “A case for intelligent ram,” IEEE
micro, vol. 17, no. 2, 1997.

[15] M. Gao, J. Pu et al., “Tetris: Scalable and efficient neural network
acceleration with 3d memory,” ACM SIGOPS Operating Systems Review,
vol. 51, no. 2, 2017.

[16] J. Ahn, S. Hong et al., “A scalable processing-in-memory accelerator
for parallel graph processing,” ACM SIGARCH Computer Architecture
News, vol. 43, no. 3, 2016.

[17] R. Nair, S. F. Antao et al., “Active memory cube: A processing-in-
memory architecture for exascale systems,” IBM Journal of Research
and Development, vol. 59, 2015.

[18] M. A. Alves, M. Diener et al., “Large vector extensions inside the hmc,”
in Design, Automation & Test in Europe Conf. & Exhibition (DATE),
2016.

[19] P. C. Santos, G. F. Oliveira et al., “Operand size reconfiguration for big
data processing in memory,” in Design, Automation & Test in Europe
Conf. & Exhibition (DATE), 2017.

[20] G. F. Oliveira, P. C. Santos et al., “Nim: An hmc-based machine
for neuron computation,” in Int. Symp. on Applied Reconfigurable
Computing, 2017.

[21] P. C. Santos, G. F. Oliveira et al., “Processing in 3d memories to speed
up operations on complex data structures,” in Design, Automation &
Test in Europe Conf. & Exhibition (DATE). IEEE, 2018.

[22] J. a. P. Lima, P. C. Santos et al., “Design space exploration for pim
architectures in 3d-stacked memories,” in Proceedings of the Computing
Frontiers Conference. ACM, 2018.

[23] A. S. Cordeiro, T. R. Kepe et al., “Intrinsics-hmc: An automatic
trace generator for simulations of processing-in-memory instructions,”
Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD),
2017.

[24] E. Azarkhish, D. Rossi et al., “Neurostream: Scalable and energy
efficient deep learning with smart memory cubes,” Trans. on Parallel
& Distributed Systems, 2018.

[25] F. Schuiki, M. Schaffner et al., “A scalable near-memory architecture
for training deep neural networks on large in-memory datasets,” arXiv
preprint arXiv:1803.04783, 2018.

[26] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing
for in-memory analytics frameworks,” in Parallel Architecture and
Compilation (PACT), 2015.

[27] M. Thottethodi, T. Vijaykumar et al., “Millipede: Die-stacked memory
optimizations for big data machine learning analytics,” in Int. Parallel
and Distributed Processing Symp. (IPDPS), 2018.

[28] J. Liu, H. Zhao et al., “Processing-in-memory for energy-efficient
neural network training: A heterogeneous approach,” in Int. Symp. on
Microarchitecture (MICRO), 2018.

[29] A. Ganguly, V. Singh et al., “Memory-system requirements for convo-
lutional neural networks,” in Proceedings of the Int. Symp. on Memory
Systems, 2018.

[30] C. Min, J. Mao et al., “Neuralhmc: an efficient hmc-based accelerator
for deep neural networks,” in Asia and South Pacific Design Automation
Conf. (ASPDAC), 2019.

[31] S. Cadambi, A. Majumdar et al., “A programmable parallel accelerator
for learning and classification,” in Int. Conf. on Parallel architectures
and Compilation Techniques (PACT), 2010.

[32] L. Xu, D. P. Zhang, and N. Jayasena, “Scaling deep learning on multiple
in-memory processors,” in Workshop on Near-Data Processing, 2015.

[33] J. P. C. de Lima, P. C. Santos et al., “Exploiting reconfigurable vector
processing for energy-efficient computation in 3d-stacked memories,” in
Int. Symp. on Applied Reconfigurable Computing, 2019.

[34] D. Gao, T. Shen, and C. Zhuo, “A design framework for processing-
in-memory accelerator,” in Int. Workshop on System Level Interconnect
Prediction (SLIP), 2018.

[35] Q. Deng, L. Jiang et al., “Dracc: a dram based accelerator for accurate
cnn inference,” in Design Automation Conf. (DAC), 2018.

[36] S. Li, D. Niu et al., “Drisa: A dram-based reconfigurable in-situ
accelerator,” in Int. Symp. on Microarchitecture, 2017.

[37] Q. Deng, Y. Zhang et al., “Lacc: Exploiting lookup table-based fast and
accurate vector multiplication in dram-based cnn accelerator,” in Design
Automation Conf. (DAC), 2019.

[38] J. Sim, H. Seol, and L.-S. Kim, “Nid: processing binary convolutional
neural network in commodity dram,” in Int. Conf. on Computer-Aided
Design (ICCAD), 2018.

[39] C. Sudarshan, J. Lappas et al., “An in-dram neural network processing
engine,” in Int. Symp. on Circuits and Systems (ISCAS), 2019.

[40] D. G. Elliott, M. Stumm et al., “Computational ram: Implementing
processors in memory,” IEEE Design & Test of Computers, vol. 16,
1999.

[41] J. V. Olmen, A. Mercha et al., “3D stacked IC demonstration using a
through silicon via first approach,” in Int. Electron Devices Meeting,
2008.

[42] J. Hrusca, “PIM comparison,” https://www.extremetech.com/computing/
197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm\
-and-hybrid-memory-cube, 2015, [Online; accessed 01-July-2019].

[43] Transcend, “DDR comparison,” https://www.transcend-info.com/
Support/FAQ-296, 2014, [Online; accessed 01-July-2019].

[44] AMD, “DDR5 and HBM comparison,” https://www.amd.com/system/
files/documents/high-bandwidth-memory-hbm.pdf, 2015, [Online; ac-
cessed 01-July-2019].

[45] Hybrid Memory Cube Consortium, “Hybrid memory cube specification
rev. 2.0,” 2013, http://www.hybridmemorycube.org/.

[46] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architec-
ture increases density and performance,” in Symp. on VLSI Technology,
2012.

[47] J. Pawlowski, “Hybrid memory cube (hmc),” Hot Chips, vol. 23, 2011.
[48] C. Lomont, “Introduction to intel advanced vector extensions,” Intel

White Paper, 2011.
[49] I. Coorporation, “Intel 64 and ia-32 architectures optimization reference

manual,” 2009.
[50] B. McDanel, S. Teerapittayanon, and H. Kung, “Embedded binarized

neural networks,” arXiv preprint arXiv:1709.02260, 2017.
[51] J. Qiu, J. Wang et al., “Going deeper with embedded fpga platform for

convolutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2016,
pp. 26–35.

[52] Y. Tian, K. Pei et al., “Deeptest: Automated testing of deep-neural-
network-driven autonomous cars,” in Proceedings of the 40th interna-
tional conference on software engineering, 2018, pp. 303–314.

[53] S. Afonso, A. Acosta, and F. Almeida, “Automatic acceleration of stencil
codes in android devices,” in Int. Conf. on Algorithms and Architectures
for Parallel Processing, 2017.

[54] T. M. Mitchell and M. Learning, “Mcgraw-hill science,” Engineering/-
Math, 1997.

[55] C. M. Bishop et al., Neural networks for pattern recognition. Oxford
university press, 1995.

[56] M. A. Z. Alves, C. Villavieja et al., “Sinuca: A validated micro-
architecture simulator.” in HPCC/CSS/ICESS, 2015, pp. 605–610.

[57] S. Li, J. H. Ahn et al., “Mcpat: an integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2009, pp. 469–480.

SAIRO RAONÍ DOS SANTOS

NEAR-DATA BLOOM FILTERS FOR EFFICIENT DATA FETCH

(versão pré-defesa, compilada em 8 de dezembro de 2020)

Documento apresentado como requisito parcial ao exame
de qualificação de Doutorado no Programa de Pós-
Graduação em Informática, Setor de Ciências Exatas,
da Universidade Federal do Paraná.

Área de concentração: Ciência da Computação.

Orientador: Marco Antônio Zanata Alves.

CURITIBA PR

2020

RESUMO

Constantes avanços na tecnologia de processadores significaram processamento mais
rápido por décadas. Porém, as tecnologias de memória usadas pela maioria dos computadores
não acompanharam tais avanços. Este desequilíbrio trouxe o problema conhecido como memory
wall. A vazão relativamente baixa na transferência de dados entre memória e processador
dificulta o uso pleno das capacidades de processamento do processador. O conceito de memórias
inteligentes propõe inverter a prática de levar ao processador todos os dados que devem ser
computados ao integrar elementos de processamento junto à memória. Assim, tarefas baseadas
em processamento de dados podem ser realizadas com movimento reduzido, simultaneamente
diminuindo o consumo de energia e melhorando o desempenho de tais aplicações. Memórias
3D são os mais populares dispositivos com capacidade de processamento em memória. Elas
consistem em várias camadas de DRAM interconectadas verticalmente e divididas em canais
administrados por controladores independentes. A base dessa pilha é uma camada lógica
capaz de integrar dispositivos de processamento. Este tipo de design possibilita incluir novos
elementos físicos no chip de memória, como registradores, unidades funcionais e memória
adicional. A Vector-In-Memory Architecture (VIMA) é uma arquitetura que propõe incluir
unidades funcionais vetoriais e uma pequena memória cache à camada lógica de uma memória
3D. Usando vetorização, a arquitetura utiliza boa parte do paralelismo da memória 3D e oferece,
com a memória cache, a possibilidade de reusar linhas de dados vetorizados. Simulações indicam
ganhos significativos em tempo de execução e consumo de energia ao executar kernels simples
de álgebra e estrutura de dados, além de machine learning. Outra estratégia comum para mitigar
problemas como o memory wall tem sido o uso de aceleradores implementados em hardware. Um
candidato comum à implementação em hardware é o bloom filter, uma estrutura de dados usada
por muitos tipos de aplicações para filtrar dados pertencentes a determinados conjuntos. Bloom
filters são comumente usados por antivírus, algoritmos de sequenciamento de DNA e sistemas de
gerenciamento de bancos de dados. Considerando os recursos da VIMA, este trabalho propõe
investigar as possibilidades de implementação de bloom filters em hardware com o objetivo de
agir como acelerador para diversos tipos de aplicações que se beneficiam deste tipo de estrutura.
Esta pesquisa estabelece a hipótese de que, com uma implementação da estrutura em hardware
capaz de explorar o paralelismo de acesso à memória considerado pela arquitetura, aplicações
que fazem uso de bloom filters podem ter consumo de energia reduzido e execução mais rápida
de tarefas altamente dependentes de dados. Palavras-chave: processamento próximo à memória.

bloom filter. big data.

ABSTRACT

Constant advancements in processor technology have translated into faster processing
for decades. However, memory technology used by most computers has not kept up with such
advances. This imbalance has caused the issue known as the memory wall. The relatively
low throughput of data between memory and processor renders the processor unable to fully
utilize its own resources. The processing-in-memory concept proposes inverting the practice of
moving all data that must be processed to the processor by integrating processing elements in
the memory device. Thus, tasks based on data processing can be performed with reduced data
movement, simultaneously lowering energy consumption and improving the performance of such
applications. 3D-stacked memories are the most common processing-in-memory-capable devices.
They consist of several vertically connected DRAM chips logically divided in channels that are
controlled independently by vault controllers. The lowest layer of the device houses processing
elements that are able to perform simple arithmetic operations on data stored in the device. This
type of device allows the inclusion of additional logical elements to the same structure, such as
registers, functional units and additional memory. Vector-In-Memory Architecture (VIMA) is an
architecture that proposes to include vector units and a small cache to the device. By using data
vectorization, it leverages the intrisic parallelism of the device and, with its cache memory, offers
the possibility of data reuse. Simulation results show significant improvements in execution
time and energy consumption while running several simple operations and machine learning
algorithms. Another common strategy to mitigate issues like the memory wall has been the use of
accelerators implemented on hardware, aimed at repetitive tasks in specific applications. These
elements work as co-processors or throughput amplifiers. A common candidate to hardware
implementation is the bloom filter, a data structure used by several applications to filter data in
certain sets. Bloom filters are commonly used by antiviruses, genome sequencing algorithms, and
database management systems. Considering the resources available to VIMA, this work proposes
investigating the possibilities of implementing bloom filter functionality in VIMA with the goal
of acting as an accelerator to several types of applications that benefit from this kind of structure.
This research establishes the hypothesis that, with the support of such an implementation that is
capable to leverage the capabilities of such an architecture, applications that use bloom filters
may achieve lower energy consumption and faster execution of tasks that are highly dependent of
data.

Keywords: near data processing. bloom filter. big data.

LISTA DE FIGURAS

1.1 Block diagram of a 3D-stacked memory . 9

2.1 The von Neumann architecture . 12
2.2 Memory scaling trends. 14
2.3 Insertion of elements into an empty Bloom filter 18
2.4 Checking element membership . 19

3.1 3D-stacked memory module with the VIMA architecture 22
3.2 Speedup of VIMA normalized to baseline . 25
3.3 Speedup and energy of VIMA and AVX multithread normalized to baseline . . . 26

5.1 RGB data deinterleaving with the VLD3 instruction 36
5.2 Initial state of vectorized data for the shift-add-xor hash function 37
5.3 Initial state of vectorized data for the shift-add-xor hash function 37

LISTA DE TABELAS

2.1 Evolution of SIMD instruction sets. Adapted from Al Hasib (2018). 15
2.2 Bloom filter stats considering a 16 KB bit array (Lyons and Brooks, 2009).. . . . 20

3.1 Baseline and VIMA system configuration. 24

4.1 Table of papers. 32

5.1 Planning chart. 40

LISTA DE ACRÔNIMOS

ASIC Application-Specific Integrated Circuit
AVX Advanced Vector Extensions
BLAST Basic Local Alignment Search Tool
CNN Convolutional Neural Network
CPU Central Processing Unit
DDR Double Data Rate
DRAM Dynamic Random Access Memory
DU Data Deduplication
FP Floating-point
FPGA Field Programmable Gate Array
FU Functional Unit
GPU Graphic Processing Unit
HBM High Bandwidth Memory
HIVE HMC Instruction Vector Extensions
HMC Hybrid Memory Cube
HPC High Performance Computing
ISA Instruction Set Architecture
IoT Internet of Things
JEDEC Joint Electron Device Engineering Council
LRU Least Recently Used
ML Machine Learning
MOB Memory Order Buffer
NDP Near-Data Processing
NIDS Network Intrusion Detection Systems
NN Neural Network
OrCS Ordinary Computer Simulator
PIM Processing-In-Memory
SIMD Single Instruction Multiple Data
SiNUCA Simulator of Non-Uniform Cache Architectures
SRAM Static Random Access Memory
SSE Streaming SIMD Extensions
TLB Translation Look-aside Buffer
TSV Through-Silicon Via
VIMA Vector-In-Memory Architecture

SUMÁRIO

1 INTRODUCTION . 8
2 BACKGROUND . 12
2.1 THE VON NEUMANN ARCHITECTURE . 12
2.2 MEMORY WALL . 13
2.3 SINGLE INSTRUCTION MULTIPLE DATA INSTRUCTIONS 15
2.4 NEAR-DATA PROCESSING. 16
2.5 BLOOM FILTERS . 17
3 VIMA: VECTOR PROCESSING AND DATA REUSE INSIDE THE ME-

MORY . 21
3.1 OVERVIEW. 21
3.2 EXPERIMENTAL EVALUATION OF VIMA 23
4 RELATEDWORK . 27
4.1 NEAR-DATA PROCESSING. 27
4.2 BLOOM FILTERS . 28
4.2.1 String Matching Applications. 28
4.2.2 Hardware Implementations . 29
5 PROPOSAL . 33
5.1 HYPOTHESIS AND OBJECTIVES . 33
5.2 INITIAL DESIGN . 34
5.3 RESEARCH PLAN . 38
5.4 PROPOSED SCHEDULE . 39
5.5 METHODOLOGY . 41
5.5.1 Ordinary Computer Simulator (OrCS) . 41
5.5.2 Binary Generation. 41

REFERÊNCIAS . 43

8

1 INTRODUCTION

Constant advances in processor technology have translated directly into faster processing
for several decades. However, the technology used for most computer systems’ main memory
has not keep up with such advances (Chang, 2017). In the age of Big Data, as applications
move toward a more data-centric behavior, as opposed to a computation-centric one, the issue of
the performance gap between processor and memory worsens. The relatively low data transfer
throughput between memory and processor makes it difficult for the processor to fully utilize its
processing capabilities. Thus, emerges the problem widely known as the memory wall (Wulf and
McKee, 1995).

The von Neumann architecture is the basic concept of all modern computers (von
Neumann, 1945). It requires that any data necessary for computation be moved from the memory
and placed within the processor before it can be processed. To avoid moving massive amounts of
data from memory to the processor, researchers started proposing placing processing elements as
close as possible to the memory (Balasubramonian et al., 2014). This approach has two highly
desirable results: i) Reduced energy consumption by reducing the amount and distance of data
movement, which accounts for up to 62.7% of total energy expenditure of a system (Boroumand
et al., 2018); ii) Faster execution of data-centric applications, as the processor can offload a large
chunk of its operations for this additional processing element to perform in parallel.

Researchers have proposed two main approaches to this: Near-Data Processing (NDP)
and Processing-In-Memory (PIM). NDP attaches an additional processing logic device to the
same interconnection structure as the memory chip. Meanwhile, PIM applies changes to the
circuitry of memory chips and memory cells to perform operations over the stored data, avoiding
the need for additional elements and taking advantage of the existing internal bandwidth of
memory cells (Boroumand et al., 2018). Both approaches avoid off-chip data transfers.

3D-stacked memories are a novel main memory design that stacks up to eight layers
of Dynamic Random Access Memories (DRAMs) on top of a layer that features processing
capabilities (Hybrid Memory Cube Consortium, 2014; Hrusca, 2015). Due to the 3D layout, as
depicted in Figure 1.1, these memory chips offer high parallelism and low-latency access to the
stored data.

Some 3D-stacked memories are NDP-capable due to the inclusion of data processing
elements to their logic layer. Moreover, these devices enable researchers to explore new
possibilities for NDP, as they allow for the inclusion of logical elements near-data, such as
registers, Functional Units (FUs) or accelerators. Therefore, a NDP design can still follow the
von Neumann model by placing entire processors near the data. This approach, however, may
increase complexity. Another possible approach is to extend the model by placing FUs near-data,
which avoids some of these issues and allows processors to continue handling tasks they excel at,

9

DRAM layers

LOGIC layer

Vault

Figura 1.1: Block diagram of a 3D-stacked memory.

such as fetching and decoding complex instructions, predicting the outcome of branches, among
other functions.

Vector-In-Memory Architecture (VIMA) is an architecture that proposes adding vector
units and a small cache memory in the logic layer of 3D-stacked memory chips. This architecture
uses large data vectors to benefit from the data access parallelism that is intrinsic to the 3D
configuration of the memory chip and offers, with the cache memory, the possibility of short term
data reuse. Simulation results indicate significant improvements in execution time and energy
consumption when executing simple benchmarks and selected machine learning algorithms.

Another common strategy to mitigate issues like the memory-wall and dark-silicon has
been hardware accelerators for specific applications (Fang et al., 2020). Such elements work as
co-processors controlled by the host processor or transparently as throughput amplifiers. They
are used to assist applications that require massive and constant data movement, with stream
behavior whose memory footprint exceeds the size of the cache hierarchy (such as machine
learning algorithms, anti-viruses and genome sequencing programs).

Considering the applications with data stream behavior, Bloom filter algorithms are very
useful to filter data in a simple and effective way. Bloom filters are a probabilistic data structure
often used by applications to check data for membership of a specific set. They use an array
bit and a set of hash functions that can be adjusted according to the size of the data set being
represented to control for false-positive rates. By using Bloom filters for such tasks, storage costs
may be reduced by up to 70% in comparison to other approaches to membership checking with
constant time complexity. They are often used in real-time applications and applications that
deal with huge data sets, such as network intrusion detection systems and database management
systems.

This work aims to investigate the possibilities of implementing Bloom filters as hardware
as part of an NDP architecture with a 3D-stacked memory. We believe such an implementation
can be used as an accelerator to aid applications in several domains that benefit from this type of

10

data structure. We hypothesize that, with a hardware implementation that can exploit the data
access parallelism available in this type of device, applications that use Bloom filters can achieve
reduced energy consumption and faster execution of highly data-centric tasks.

Thus, our objective is to provide a solution that can be used by applications that often
must parse through vast data sets and benefit from an efficient hardware implementation to aid
this task. By providing such an accelerator, as the task relies on this new element for processing,
rather than on a processor core, we wish to mitigate performance limitations when processing
large amounts of data caused by issues such as the von Neumann bottleneck and the memory
wall.

This approach is aimed specifically at supporting applications dealing with large volumes
of data. While NDP architectures like VIMA can be very effective at mitigating issues related to
data movement, other ubiquitous strategies like cache memories are already efficient whenever the
memory footprint of an application is small enough that it fits inside the cache hierarchy (Alves
et al., 2016). However, as the largest level of the cache hierarchy becomes overwhelmed, it
ceases to provide any benefit to data access latency times and, from that point onwards, an NDP
architecture can possibly achieve both faster processing and reduced energy consumption.

In considering NDP architectures that propose adding elements to 3D-stacked memory
chips, one could argue that adding a full core to the architecture could be preferable to a simpler
setup such as the one VIMA proposes. However, that would cause a number of issues. A full
core would add a level of complexity to the design that would outweigh the added functionality,
as it would introduce several elements that would possibly need to be consistently coherent with
all the cores in the host processor. Thus, simpler architectures are preferable in that they are able
to achieve a significant processing speed-up while maintaining a low level of complexity.

We expect to face a number of challenges in pursuing research in this direction. While the
Bloom filter is a relatively simple data structure, providing an effective hardware implementation
generic enough for multiple applications in the fashion we propose must consider several
requirements. The following is a non-exhaustive list of some of the challenges we foresee:

• Data alignment: We believe that it is essential to consider how application data is
organized in the memory for optimized processing of sets with huge item counts. If the
processing of items for both creation and consulting of Bloom filters is not efficient,
throughput might not be high enough to justify the usage of such a solution.

• Application migration: We do not expect to support every computer application.
However, we plan to address applications that face the memory wall, including most
big-data applications from several different domains.

• Validation: We must rely on simulators for test and validation of any designs we
propose, like most research in computer organization and architecture.

11

• Design choices: We foresee multiple possible designs, from ASIC to VIMA extension.
Nevertheless, it is essential that our resulting proposal carefully considers all design
choices regarding Bloom filters, such as supported data set size, number of hash
functions, and desired false-positive rates.

• Security: We must provide some protection and isolation of the Bloom filters from
malicious activities, especially as we wish to support applications like anti-viruses and
network intrusion detection systems.

• Scope: We expect to have to narrow our application domain scope to those that are
feasible considering architectural and timeframe constraints. Thus, it may not be
possible to support every kind of Big Data application that can benefit from Bloom
filters.

The remainder of this document is organized as follows. Chapter 2 discusses many
concepts related to the subject of this research proposal. Namely, the von Neumann architecture,
the memory wall, Single InstructionMultiple Data (SIMD) instructions and bloom filters. Chapter
3 gives an overview of VIMA, its main components, behavior and simulation results. Chapter
4 goes over some of the existing work related to PIM and NDP architectures and how they
relate and compare to VIMA and also discusses research related to bloom filters, their most
common applications and existing hardware implementations. Chapter 5 describes our proposal,
establishes research hypotheses and objectives, and lays out a tentative schedule for the research.

12

2 BACKGROUND

This chapter presents our proposal’smain concepts, such as the vonNeumann architecture,
the memory wall, Single Instruction Multiple Data (SIMD) instructions, Near-Data Processing
(NDP), and Bloom filters.

2.1 THE VON NEUMANN ARCHITECTURE

The von Neumann architecture (von Neumann, 1945) describes a computer that consists
of four fundamental components: a processing component that performs logic and arithmetic
operations; a control component that manages a stream of instructions; a storage component
that houses data the control component instructs the processing component to handle; and an
input/output component.

It defines that tasks for a computer to complete are described as lists of individual
instructions performed by its processing component. This list is managed by its control component,
informing the processing component what instruction to perform next. These two items are often
housed in the processor known as Central Processing Unit (CPU).

Each instruction includes, aside from the operation the processing component must
perform, what data it must use or affect. The control component must also take note of this, as all
data necessary for an instruction to be performed must be available for the processing component
at the time of its execution. This data must be fetched from the storage component, also known
as memory, and the operation result may be stored in it. Once a processing task is completed, its
outcome may be presented to a user through the input/output component. Any data produced or
used by the input or output components must also be placed in the memory.

Figura 2.1: The von Neumann architecture.

Figure 2.1 shows a simplified representation of the described architecture and highlights
an issue known as the von Neumann bottleneck. Since all components are connected by a bus
through which all data movement must take place, the speed at which the overall system can
function is limited by the speed of the bus itself. As more extensive and complex tasks started

13

being handled by computers, program instructions and data stored in the memory became a
problem. The processor relies on the bus that connected it to the memory to fetch each instruction
and data. This distance between logic and storage, together with the high latency on memory
systems, was the initial motivation for placing instruction caches inside the processor, as the
instruction and data fetching became a bottleneck.

Cache memories are small Static Random Access Memory (SRAM) chips that hold
several times less data than the main memory, but that offer much quicker access to it. These
are present in practically every modern computer processor designed in the last few decades.
These cache memories are placed inside the processor. Thus, the instructions they store can be
accessed much faster because of the faster storage technology and because of this placement in
the architecture.

2.2 MEMORY WALL

Modern computers’ processing capabilities improved sharply, as predicted by Moore’s
Law (Schaller, 1997). However, the memory technology was unable to evolve at the same pace,
lagging behind significantly. As the processor needs to wait for data fetch before operating, this
caused a bottleneck that is commonly called memory wall (Wulf and McKee, 1995).

The most common type of memory used in modern computers is the Dynamic Random
Access Memory (DRAM), a technology that offers cheap storage requiring only one transistor
and one capacitor per bit. On the other hand, it suffers from high access latency, meaning data
takes multiple steps and a long time to travel from the memory cell to the processor (Jacob et al.,
2010)

There are several reasons why this communication latency is so high. For instance, the
DRAM employs capacitor cells to store information, which are charge-based and thus must be
refreshed regularly. Nevertheless, such voltage decay requires sense amplifiers to retrieve data.
Furthermore, its access protocol consists of several phases that require waiting for specific clock
counts. Lastly, it is placed off of the processor chip, which means data must travel through the
data bus to get to the processor.

Figure 2.2, adapted from Chang et al. Chang (2017), illustrates DRAM technology
scaling trends over two decades. The main strategy to mitigate the issue has been to increase
parallelism inside the DRAM, with the addition of multiple channels, ranks, and banks that can
be accessed independently. Thus, while capacity and bandwidth improved by 128× and 20×
respectively, latency only improved by 1.3×.

On the other hand, one avenue explored to reduce the latency caused by data movement
was to keep data close to the processor through the use of data caches. These cache memories
store data whenever the processor fetches it from the main memory. If a cache memory is full, its
replacement policy chooses a block to evict, freeing space for the incoming data. The cache aims

14

Figura 2.2: Memory scaling trends. Adapted from Chang (2017).

to store data most likely to be sooner referenced again by the processor. This assessment is based
on the concept of locality of reference (Jacob et al., 2010).

The locality of reference alludes to the fact that most applications’ data usage patterns
are not random but rather follow a simple behavior: they tend to access the same data more than
once in a short time. They may also access nearby data addresses in the memory space. As long
as applications follow this pattern, cache memories are effective at mitigating the memory wall
issue. After some data is fetched from the main memory once, it is placed in the cache memory,
and subsequent references to this data cause the processor to fetch it from the cache, thereby
causing the access to have a small latency (Jacob et al., 2010).

However, this is not true for every application. Programs with other data access behavior
patterns may not benefit from cache memories and experience the DRAM latency for most data
accesses (Wulf and McKee, 1995; Balasubramonian et al., 2014; Hashemi et al., 2016). While
data prefetching techniques may help mitigate this problem, they can also cause cache pollution
if they mispredict the application behavior. At the same time, prefetchers still causes massive
data movement through the memory hierarchy (Ebrahimi et al., 2009).

As applications become data-centric, their data-set tends not to fit inside the cache
memories, making such memories useless for data-reuse and performance purposes. Machine
learning algorithms, for instance, are notorious for their data-hungry behavior and may thus
be primarily limited by the memory wall. This behavior is also found on other typical
consumer applications, such as those that use 4K video streaming, virtual reality, 3D graphics,
etc (Boroumand et al., 2018).

With this trend, another issue caused by data movement becomes apparent: the increased
amount of energy it causes systems to consume. Moving data through the system consumes
more energy than computation. Thus, as applications become memory-bound, the energy spent
on moving this data back and forth becomes a problem (Balasubramonian et al., 2014). On
average, about 62% of the total energy is spent when moving data from the memory to the
processor (Boroumand et al., 2018).

Some efforts to reduce the impact of this issue have focused on making the processor
more tolerant of latency by basically designing it to be capable on focusing on other necessary

15

tasks as it waits for data to be transferred from the memory. One example is the non-blocking
cache memory, which allows caches to fulfill other requests at the same time as it fetches data
from the memory to respond to a cache miss. Multithreading is another strategy, which moves the
control flow of the processor to a different thread in the event of a cache miss, while prefetching
is a technique that tries to learn the pattern of memory requests issues by an application and
uses that information to issue requests for data before it is actually needed. While these help the
system tolerate some latency, they also generate more memory requests, which contributes to
overwhelming the memory bandwidth and reintroduces a bottleneck (Efnusheva et al., 2017).

2.3 SINGLE INSTRUCTION MULTIPLE DATA INSTRUCTIONS

Single Instruction Multiple Data (SIMD) instructions enable systems to apply a specific
transformation to several data points at once, as opposed to operating over (scalars) only one
data point per instruction, thus improving the ratio of processed data per number of instructions.
Supercomputers used this concept since the 1970s, and SIMD instruction sets started to appear
on desktop computers in the 1990s, as home users became interested in machines powerful
enough to handle audio and video processing and thus manufacturers began looking into ways to
accelerate video processing (Lee, 1995).

The first widely known SIMD instruction set was MMX, which was included on Pentium
processors in 1997 and used 64-bit registers. SIMD instruction sets are included in virtually
every processor and have since become much more useful with bigger vectors and a wider variety
of operations. Table 2.1, adapted from Al Hasib (2018), shows the evolution of SIMD instruction
sets on Intel processors.

Tabela 2.1: Evolution of SIMD instruction sets. Adapted from Al Hasib (2018).

Year SIMD Instruction Set Introduced In Vector Size
1997 MMX Pentium MMX 64-bit
1999 SSE Pentium III 128-bit
2000 SSE2 Pentium 4 Willamette 128-bit
2004 SSE3 Pentium 4 Prescott 128-bit
2007 SSE4.1 Penryn 128-bit
2009 SSE4.2 Nehalem 128-bit
2011 AVX Sandy Bridge 256-bit
2013 AVX2 Haswell 256-bit
2016 AVX512 Knights Landing 512-bit

SIMD instruction sets provide improved performance, better utilization of resources,
and improved energy efficiency (Al Hasib, 2018). This strategy assumes several constraints: i)
It requires adding registers with larger storage capacity, commonly regarded as vector units, to
the processor. ii) As implied by the term ’vector unit’, the data points are treated as a vector
and stored in consecutive memory addresses. iii) The memory wall remains a limiting factor

16

because this approach does not attempt to mitigate data movement from the memory to the
processor. iv) Compilers can seldom automatically identify opportunities for transformation
into SIMD instructions and thus require programmers explicitly to consider vector opportunities
when coding.

Processor manufacturers provide ways for programmers to write vector enabled code.
The intrinsics libraries offer routines that can be used on regular code and explicitly signal
to the compiler that an operation must be performed with a vector unit. These routines calls
are automatically translated into vector operations in the assembly code generated during
compilation (Lomont, 2011).

SIMD instructions may achieve two desirable effects: i) An increase in processed data
per instruction ratio, causing fewer accesses to the memory; ii) Improved usage of the parallelism
capabilities of the memory device, reducing the overall memory latency.

2.4 NEAR-DATA PROCESSING

A different approach to dealing with the memory wall has been altering the traditional
processor-memory architecture. Since the problem stems from the need to move data to the
processor whenever an instruction requires it for execution, researchers started to investigate the
possibility of inverting this relationship and performing the required transformation where the
data is stored.

This concept emerged as an alternative to classical architectures, aiming to address
issues related to computation and memory access limitations, such as the memory wall (Wulf and
McKee, 1995) and dark silicon (Esmaeilzadeh et al., 2011). In this new approach, at least one
processing element is included in the same chip as the memory and used to perform operations
over the data, thus mitigating data movement between memory and processor. Such smart
memories improve performance and reduce energy consumption simultaneously as they offer
high parallelism and ensure low average latency during computation of tasks that apply high
pressure to the memory (Patterson et al., 1997; Elliott et al., 1999).

These initiatives usually employ one of two main strategies: i) Applying changes to the
circuitry of memory chips to enable them to perform operations on the stored data (Mutlu et al.,
2019), thereby avoiding additional logic elements and taking advantage of the existing internal
bandwidth of memory cells, known as Processing-In-Memory (PIM); ii) Offloading tasks to an
additional processing logic device placed on the same interconnection structure as a 3D-stacked
memory chip, thus exploiting the low-latency and high-bandwidth access capabilities inherent
to this type of design, known as NDP. In this thesis proposal, our primary focus is on the NDP
approach as it relies mainly on architectural modification and less on electrical grid changes (as
opposed to the PIM approach).

Generally speaking, a 3D-stacked memory chip is composed of multiple stacked layers
of DRAMs (usually 8) and a base layer that provides a logic layer, where a processing element

17

can be integrated to operate elements inside the memory, as depicted in Figure 1.1. The memory
is logically partitioned into independent vaults (usually 32 partitions), each further divided
into independent DRAM banks (ranging from 8 to 16 banks per vault) distributed among
DRAM layers and linked through Through-Silicon Vias (TSVs) (Olmen et al., 2008). The
most well-known examples of 3D-stacked memories are Hybrid Memory Cube (HMC) (Hybrid
Memory Cube Consortium, 2014), which has been discontinued, and High Bandwidth Memory
(HBM) (Jun et al., 2017), the current commercial version in accordance to the Joint Electron
Device Engineering Council (JEDEC).

The logic layer from the 3D-memory can implement processing elements to execute some
operations to avoid some data movement to the processor. For HMC, the supported operations
are atomic and consist of fetching data from a specific location, applying some modification to it,
and storing the resulting data back in the same location (Nai and Kim, 2015). Since the device is
logically partitioned in independent vaults, each managed by its vault controller, each processing
element can only modify data stored in its vault. Such organization limits the utilization of these
processing capabilities for more complex tasks and guarantees low latency and high bandwidth
during data accesses (Mutlu et al., 2019; Hybrid Memory Cube Consortium, 2014; Jeddeloh and
Keeth, 2012; Pawlowski, 2011).

The high bandwidth provided by the internal parallelism (Hybrid Memory Cube Con-
sortium, 2013; Jeddeloh and Keeth, 2012; Pawlowski, 2011) achieved by its 3D integration
technology along with the 32 vaults makes such architectures ideal for streaming and parallel ap-
plications, graphics processing, High Performance Computing (HPC), and networking. Generally,
any application with coalescent memory accesses can benefit from it. Compared to the energy
costs of Double Data Rate (DDR) memory technology, these devices require the same voltage
level on average. However, 3D memories can achieve higher memory bandwidth, reaching up to
320 GB/s (Transcend, 2014; AMD, 2015), which makes them more energy-efficient (Hrusca,
2015).

NDP usage presents challenges, such as efficiently maintaining cache coherence and
translating virtual addresses in the memory (Ghose et al., 2018), but 3D-stacked memory devices
offer several exciting possibilities for new architectures. Such memories may include additional
architectural elements such as sequencers, Functional Units (FUs), or even full processing cores,
thereby giving these elements direct memory device access. Moreover, connecting such proposals
next to the internal interconnection enables ideas that leverage accessing data within all vaults,
further exploiting the parallelism and consequent bandwidth capabilities inherent to the device.

2.5 BLOOM FILTERS

Bloom filter algorithms aim to indicate whether an element is present in a set in a fast
and memory-efficient way by using hash structures to represent the set of elements.

18

Figura 2.3: Insertion of elements into an empty Bloom filter. We consider < = 8 and : = 3.

A Bloom-filter consists of a bit array E of length < and a set of :8 independent hash
functions. Consider one wishes to use a Bloom filter to represent a set of items (. Initially, all bits
in E are set to zero, which signifies no items have been added to the structure yet. The insertion
phase consists of iterating over every element 4 ∈ (and applying the same operation over each
one. The insertion operation entails applying all :8 hash functions to 4 and setting the bit at the
position of E that corresponds to each hash result. Figure 2.3 shows an example considering a
Bloom filter representing an empty set and the subsequent addition of two elements to the set.

The inquiry phase consists of a very similar process. Suppose we wish to check whether
an element = ∈ (. To find out, we apply all :8 hash functions to = and check the bits at the
positions corresponding to each result. Due to the mathematical properties of hash functions,
if any of those bits are set to zero, we know for sure that = ∉ (. On the other hand, if all bits
are set to one, we cannot ensure that = ∈ (. False positives are more likely to occur due to hash
collisions as more keys are added, and more bits are set equal to one. See Figure 2.4 for an
example of each situation (Zengin and Schmidt, 2016). In general, false-positives may occur
while false-negatives will never happen on Bloom filters.

The four variables that must be considered when designing a Bloom filter are the bit
array length <, number of items =, number of 8 independent hash functions :8 and false positive
probability ?. Equations 2.1 and 2.2 show how all four variables influence each other (Santos
et al., 2020).

< = −(= × ;=(?)
(;=(2.0)2)

) (2.1)

19

Figura 2.4: Checking element membership: "o" causes a negative result and "u" causes a false positive.

: = ;=(2.0) × <
=

(2.2)

The false-positive probability is one of the main aspects one must consider when
designing a Bloom filter. Considering a hash function with perfect spread, the false positive
probability ? of a Bloom filter can be calculated with Equation 2.3 (Gupta and Batra, 2017).

? = (1 − 4−:=
<
): (2.3)

The false-positive rate of a Bloom filter is most affected by the number of hash functions,
as the collision rate of each additional function causes false-positives to be less likely. However,
as more bits are set per item, the structure becomes saturated with fewer items. According
to (Lyons and Brooks, 2009), a Bloom filter is considered saturated or full when half of its bits
have been set, as false positives become dramatically more likely if any more bits are set to 1.
At this point it is also the as space efficient as possible, considering a fixed bit array length.
Thus, if one wishes to lower the false positive rate of a Bloom filter considering a specific
space requirement, this can be achieved by increasing the amount of hash functions it uses and
decreasing the number of items it considers. Table 2.2, adapted from (Lyons and Brooks, 2009),
considers a Bloom filter with a 16 KB bit array (<) and varies the number of hash functions :8.
Capacity = of the Bloom filter and false positive probability ? vary accordingly.

20

Hash Functions (:) Item Capacity (=) False Positive Rate (?)
7 13500 < 1%
10 9000 < 0.1%
14 6500 < 0.01%

Tabela 2.2: Bloom filter stats considering a 16 KB bit array (Lyons and Brooks, 2009).

As the Bloom filter became a popular data structure in various application domains,
several variants have been proposed, each addressing specific application needs and characteristics.
According to (Patgiri et al., 2019), these are the more common Bloom filter variants:

• Counting Bloom Filter: instead of a single bit per index, the counting Bloom filter
includes a counter of how many times an index has been set. This design modification
permits the removal of elements from the set. When an inquiry happens, the structure
returns the smallest count found out of all indices (Mcvicar et al., 2017).

• Fingerprint Bloom Filter: consider that the false positive rate of a counting Bloom filter
is higher than that of a standard Bloom filter. The fingerprint Bloom filter stores small
hashes instead of a counter, which reduces the probability of a false positive. Naturally,
storage costs are higher than those of a standard or counting Bloom filter (Fan et al.,
2014).

• Hierarchical Bloom Filter: the hierarchical Bloom filter employs a tree of separate
Bloom filters and achieves a lower false-positive rate. It addresses the scalability issue
of standard Bloom filters if the number of items in the set is not known at the time of
creation, as it can expand as needed (Lu et al., 2011).

• Multidimensional Bloom Filter: stores bits on a structure with several dimensions
instead of an array to reduce false-positive rate.

• Compressed Bloom Filter: a Bloom filter variant that is even more space-efficient than
the standard Bloom filter, but with higher false-positive probability (Lyons and Brooks,
2009).

Observing that Bloom filters are relatively simple data structures suggests that such
implementations can be useful as accelerators and co-processors to mitigate issues such as the
von Neumann bottleneck and the memory wall. Their widespread use in applications dealing
with large volumes of data will be further discussed in Section 4.2.

21

3 VIMA: VECTOR PROCESSING AND DATA REUSE INSIDE THE MEMORY

In this chapter we discuss Vector-In-Memory Architecture (VIMA), a novel general-
purpose NDP architecture. VIMA interests us for several reasons: i) Its design features many
components we find desirable for our research proposal. ii) While it is a general-purpose
architecture, it keeps complexity low by avoiding the addition of a full processing core to the
memory chip. iii) A complete environment for simulation of the VIMA architecture is available.
Thus, we have selected it as a starting point for our research, upon which we hope to improve and
from which we believe we will branch out as we progress.

The next sections give an overview of the architecture through a thorough explanation of
its components and inner workings and discuss several benchmarks’ simulation results compared
to an x86 baseline.

3.1 OVERVIEW

VIMA adds general-purpose vector operation capabilities to 3D-memories to explore
the data access parallelism inherent to this architecture, including a cache memory that enables
fast reuse of vectorized data within the memory. Similar to other NDP approaches, VIMA obtains
data from several independent memory vaults in parallel (Alves et al., 2016; Santos et al., 2017;
Tomé et al., 2018). The main physical addition of VIMA compared to related work is a small
cache memory that enables data-reuse of data vectors. One could perceive this as a minor change,
but VIMA enables significant improvements due to its new operation rationale, such as improved
data re-usage, easy-to-program interface, precise exceptions, extensible design, multi-threading,
all discussed in the next sub-sections. At the same time, it maintains most of the performance
improvements compared to any NDP strategy. Figure 3.1 shows VIMA inside a 3D-stacked
memory.

Like in other technologies that employ vectorized data, such as Streaming SIMD
Extensions (SSE), Advanced Vector Extensions (AVX) and NEON, VIMA instructions are
inserted into the application by the compiler. During execution, VIMA instructions traverse
the processor pipeline up to the execution stage like a regular memory instruction. They are
then sent for execution in the 3D-stacked chip, avoiding data movement between memory and
processor. VIMA instructions have a 3-operand format and operate over data vectors of 8 KB
or 256 B. An 8 KB vector enables usage of the full parallelism of a 3D-stacked memory chip
with 32 vaults and at least eight banks per vault, while a 256 B uses a single vault. The small
cache memory of 64 KB inside VIMA stores up to eight 8 KB vectors or 256 256 B vectors. Our
flexible design also allows the usage of smaller or larger data vectors, which would reduce or
increase the parallelism inside the memory, respectively.

22

3D Stacked MemoryProcessor
Core

ALUFetch Decode
Rename
Dispatch

Write
Back

Memory Order Buffer

Cache
Hierarchy

MMU/
TLB

Last Level
Cache

VIMA
instruction

VIMA
instruction

VIMA inst.
(status)

VIMA inst.
status

Vault 0
logic

Vault 1
logic

Vault 31
logic

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

...

Crossbar switch

VIMA

VIMA Cache
Memory

Addr.
& Data

Ld/St Cmd.

Result
+ zero

Instruction sequencer

8 KB
Op.

L1 Cache

DRAM
Layers

Logic
Layer

Reorder Buffer

Figura 3.1: 3D-stacked memory module with the VIMA architecture.

Although VIMA instructions pass through the pipeline like regular memory instructions,
they still require an Instruction Set Architecture (ISA) extension. All VIMA instructions are
placed inside the Memory Order Buffer (MOB) and sent into the memory system upon traversing
the pipeline. Once the memory returns a signal informing the execution status of an instruction
(similar to what happens with AVX instructions), the processor reacts to this signal by committing
the instruction if it was successfully executed or otherwise flushing the pipeline, raising an
exception, and taking the necessary steps to handle it.

The processor shall provide precise exceptions by dispatching one VIMA instruction at
a time (it dispatches the next VIMA instruction only after committing the last preceding one).
This stop-and-go leads to two sources of performance reduction. First, since there is parallelism
in the execution of VIMA instructions, when VIMA uses smaller vector sizes, it does not fully
use the memory’s internal parallelism. For instance, VIMA using 256 B vectors performs, on
average, 74% worse than an equivalent version using 8192 B vectors. The second impact of
precise exceptions is an execution gap between instructions. The impact of such pipeline bubbles
is small for VIMA, varying between 2% and 4%. Every VIMA instruction generates at least one
load or store operation into the memory. Therefore, these memory addresses are translated by
the Translation Look-aside Buffer (TLB) and go through permission checks like any memory
operation. We assume hardware support for large TLB pages, a common feature in modern
processors (Kwon et al., 2016). VIMA instructions bypass the cache hierarchy. The memory

23

addresses touched by any VIMA instruction are written back from the system’s cache hierarchy
to the main memory before execution to guarantee cache coherence. The coherence protocol
must be VIMA-aware. It must write-back dirty lines and invalidate cache belonging to the pages
on which VIMA will operate. These instructions then move into the VIMA instruction sequencer
inside the 3D-memory, where the actual data access happens.

VIMA requires adding three elements to the 3D-memory: a set of vector functional
units, an instruction sequencer, and a cache memory. This paper considers a memory with 32
vaults, 8 independent banks per vault, and 256 B row buffer size, but other layouts are also
feasible. VIMA operates over vectors of 8 KB (32× 256B) utilizing the vault parallelism. One
instruction can operate over 2048× 32-bit elements (e.g., integer) or 1024× 64-bit elements
(e.g., floating-point). We used 256 parallel vector units, which means that eight extra cycles are
required to fully process the 2048 elements in a pipelined fashion. This decision reduces the
number of wires between the VIMA cache and the vector units.

VIMA executes instructions in-order. Instructions execute inside VIMA as soon as
the required data is fetched from the memory vaults and made available in the VIMA’s cache
memory. If the data is available in the cache, 1 cycle is required for a tag-check, while another 8
cycles are required for 8 data transfers. These transfers and the functional units are fully pipelined,
enabling complete parallelism. As most functional units require two operands, our design uses 2
cache ports to complete the operation in 8 cycles (required by the data transfers) plus the number
of cycles required by the last pipelined operation.

Once an instruction finishes executing, a status signal is sent to the processor regarding
completion or exception (similar to x86 AVX instructions). Before the execution, the sequencer
checks the cache for the data that is required by each instruction. In case of a cache hit, the
operation starts immediately. The operation ends by writing the results into a fill buffer. When
VIMA sends a signal to the processor, it also writes from this buffer into the cache. This
effectively hides the write operation inside the gap created by the "stop-and-go"approach. As we
write one entire VIMA cache line at once, no Read-to-Modify operation is required. Whenever
the VIMA cache evicts this dirty line, it will write it back to the main memory. During a miss,
VIMA cache uses a Least Recently Used (LRU) policy to evict a line. VIMA cache splits each
vector access into 128 sub-requests to the vault controllers (for 8 KB vectors, considering 64 B
cache lines). Sub-requests guarantee minimal changes inside the DRAM devices as we are using
the same cache line granularity. Besides, they are issued to different vaults and banks to increase
parallelism.

3.2 EXPERIMENTAL EVALUATION OF VIMA

WeusedOrCS, an in-house cycle-accurate simulator, a simplified version of SiNUCA (Al-
ves et al., 2015), to evaluate the architecture. The simulation parameters, which are described in

24

Tabela 3.1: Baseline and VIMA system configuration.

OoO Execution Cores 32 cores @ 2.0 GHz, 32 nm; Power: 6W/core;
6-wide issue; Buffers: 18-entry fetch, 28-entry decode; 168-entry ROB;
MOB entries: 64-read, 36-write; 2-load, 1-store units (1-1 cycle);
3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);
1-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle);
1 branch per fetch; Branch predictor: Two-level GAs. 4096 entry BTB;
L1 Data + Inst. Cache 64 KB, 8-way, 2-cycle; 64 B line; LRU policy;
Dynamic energy: 194pJ per line access; Static power: 30mW;
L2 Cache 256 KB, 8-way, 10-cycle; 64 B line; LRU policy;
Dynamic energy: 340pJ per line access; Static power: 130mW;
LLC Cache 16 MB, 16-way, 22-cycle; 64 B line; LRU policy;
Dynamic energy: 3.01nJ per line access; Static power: 7W;
3D Stacked Mem. 32 vaults, 8 DRAM banks/vault, 256 B row buffer;
4 GB; DRAM@1666 MHz; 4-links@8 GHz; Inst. lat. 1 CPU cycle
8 B burst width at 2.5:1 core-to-bus freq. ratio; Closed-row policy;
DRAM: CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);
Avg. energy per access: x86:10.8pJ/bit; VIMA:4.8pJ/bit; Static power 4W;
VIMA Processing Logic Operation frequency: 1 GHz; Power: 3.2W;
256 int. units: alu, mul. and div. (8-12-28 cycles for 8 KB pipelined)
256 fp. units: alu, mul. and div. (13-13-28 cycle for 8 KB pipelined);
VIMA cache: 64 KB (8 lines), fully assoc., 2-cycle (1-tag, 1-per data);
Dynamic energy: 194pJ per line access; Static power: 134mW;

Table 3.1 are similar to those of Intel’s Sandy Bridge microarchitecture, with advancements such
as large vector instructions (i.e., AVX-512).

We used 6 integer and floating-point kernels asworkload. The integer kernels areMemory
Copy andMemory Set, which generate most of the data movement in big data applications and
typical consumer workloads (Boroumand et al., 2018). The floating point kernels are Vector Sum,
Matrix Multiplication, k-Nearest Neighbors,Multi-Layer Perceptron, and Stencil convolution,
which represent applications like neural network and computational fluid dynamics processing.
For all applications (except MatMul), we used data sets of 4 MB, 16 MB, and 64 MB. We
obtained the application traces using Pin (Bach et al., 2010) tool, aided by the VIMA Intrinsics
tool (see section 5.5.2). Here is the description for each application:

• MemSet: sets all positions of a vector to a specific value.

• MemCopy: copies the contents of a vector to a new vector in a different memory
location.

• VecSum: sums up each element of two input vectors storing the result in an output
vector.

• Stencil: convolution using a 5-points stencil over a matrix storing the result in an output
matrix.

25

• MatMult: multiplies two square matrices and stores the results in an output matrix.
Due to simulation time, we adopted up to 8 MB in size per matrix, resulting in a total
memory footprint of 6 MB, 12 MB, and 24 MB.

• kNN: classifies 256 test instances in an n-dimensional space. We used K to equal 9,
32768 training instances, varying the number of characteristics (32, 128, 512).

• MLP: neural network inference step. We used 32768 test instances, varying the number
of characteristics (64, 256, 1024).

Figure 3.2(a) shows the speedup results for the benchmarks using VIMA compared to
AVX as baseline, while varying the input size. We only mention results for VIMA using 8 KB
vectors, as this size enables the 32 vaults’ parallelism.

Speedup on integer benchmarks MemSet and MemCopy happens mainly because of the
superior use of parallelism in the memory when fetching data without any data reuse. Still, it
is partially limited because each VIMA instruction generates only a single VIMA cache miss
at a time. In contrast, whenever VIMA requires two operands (generating two vector misses),
both are requested leveraging the bank parallelism inside each vault. VIMA presents a similar
execution time for these two applications, while AVX presents faster execution forMemSet, which
has a smaller memory footprint.

Me
mS
et

Me
mC

op
y

Ste
nc
il

Ve
cS
um

KN
N

ML
P

0
2
4
6
8
10
12

2.
02

4.
83

1.
74

5.
71

0.
25 0.
382.

25

7.
60

2.
99

6.
94

0.
6

0.
512.

32

8.
17

2.
50

7.
23

4.
45

2.
03Sp
ee
du
p

4MB 16MB 64MB

Ma
tM
ult

0

10

20

30

40
13

.2
6

17
.6
7 26

.4
8

2MB 4MB 8MB

Figura 3.2: Speedup of VIMA normalized to baseline AVX with a single thread (higher is better).

The execution of VecSum using VIMA offers significant performance improvements by
making good use of parallelism in the main memory. Namely, by fetching two large vectors in
parallel, VIMA outperforms AVX by over 7× for this benchmark with the largest input size.

The Stencil algorithm offers good opportunities for reuse of vectorized data and thus
also shows significant speedup. Here, data fetches with a single element stride are expected and
can be served by the cache. Our baseline system considered a 16 MB last level cache. Results
vary according to input size and matrix size, considering whether the dataset fits inside the last
level cache of the baseline system and how efficiently the algorithm deals with different matrix
dimensions. These factors cause the smaller speedup for the 4 MB input size and the increase of
speedup between the 16 MB and 64 MB data sets.

26

Results for kNN and MLP using VIMA present no speedup whenever the data set used
fits in the cache hierarchy of the baseline system (4 and 16 MB cases). For these cases, the
processor cache hierarchy provides quick access to all the data necessary for processing. However,
the speedup is considerable when the input size exceeds the size of the last level cache. VIMA is
up to 4× faster than AVX for the 64 MB datasets, when the x86 cache presents no help.

TheMatMul application uses a total of 6 MB, 12 MB, and 24 MB, considering the three
matrices. For a straightforward, clear comparison of the memory access performance, we used
the same algorithm for AVX and VIMA, which led to higher gains for VIMA. However, in our
tests a tiled algorithm for AVX can result in up to 4× improvements. In such scenario, VIMA
would still be over 6.5× faster for the 24 MB problem size.

In comparison to multithreaded AVX, our discussion considers only the largest sizes
of benchmarks Stencil, VecSum, and MatMult. Figure 3.3 compares VIMA with an AVX
implementation using up to 32 cores. The percentages above the plot indicate the energy
consumption of each execution relative to AVX single-threaded execution, in the respective order.

StencilVecSum MatMult
0

10

20

30

40

2.
507.
23

26
.4
8

1.
29

1.
19

0.
951.
634.
27

1.
91

1.
755.
43

3.
84

1.
877.
71

7.
71

1.
927.

85 15
.0
0

Sp
ee
du
p

VIMA AVX 2T AVX 4T AVX 8T AVX 16T AVX 32T

65
%

26
%

7%12
0%

84
%

18
9%

11
2%

61
%

13
0%

11
6%

83
%

10
2%

13
0%

10
6%

88
%

17
5%

16
7%

84
%

Figura 3.3: Speedup and energy of VIMA and AVX multithread normalized to baseline AVX with a single thread
(higher is better). Numbers on the top of the plot present energy consumption relative to AVX single thread.

Considering these results, VIMA offers both superior performance and significant
energy savings when compared to a single-threaded execution. It continues to outperform the
baseline system for VecSumwhen these are executed with up to 16 cores in parallel, at a very small
fraction of the consumption of energy. For Stencil and MatMult applications VIMA presents
better performance even compared to AVX with 32 threads. For such applications VIMA benefits
from the internal 3D-memory parallelism, while the VIMA cache provides necessary data reuse
to enable gains. At the same time, VIMA does not rely on multiple cache levels, which would
add extra latency to the memory latencies during a sequence of misses.

These results inform us of many desirable features of VIMA that make it interesting
for our proposal. We believe we can leverage characteristics such as the efficient use of the
parallelism of the 3D-stacked memory and the ability to process large amounts of data per
instruction to design a solution that helps us achieve our goal. Thus, we consider VIMA as a
basis for our proposal from this point onward.

27

4 RELATEDWORK

Our research proposal’s goal consists basically of leveraging the capabilities of a NDP
architecture to implement a Bloom filter structure on hardware to aid applications that deal with
large data sets with more efficient mechanisms for data fetching.

With this goal in mind, in this Chapter we discuss published research efforts found in
the literature that relate to the main subjects of this document: Near-Data Processing and Bloom
filters.

4.1 NEAR-DATA PROCESSING

The Near-Data Processing (NDP) capabilities of 3D-stacked memories have been
explored by researchers in several distinct areas. Xie et al. (2017), for instance, move a portion of
the computations necessary to render 3D images to the logic layer of a 3D-stacked memory. The
authors aim to reduce data traffic during some of the more memory-intensive portions of graphics
processing algorithms. Korikawa et al. (2020) use NDP in Network Function Virtualization
(NFV) environments to speed-up packet processing by leveraging the bank interleaving and
channel parallelism capabilities of 3D-stacked memories.

Numerous research efforts in NDP address issues brought about by requirements of
big data applications, which process large data sets and are therefore particularly susceptible to
the pitfalls of data movement and similar to Vector-In-Memory Architecture (VIMA). Lee et al.
(2019) identify data redundancy in data centers and propose a NDP accelerator for inline Data
Deduplication (DU) that significantly reduces latency and power consumption in comparison
to traditional DU tools. NDP research efforts will sometimes include placing Accelerated
Processing Units (APUs) or ARM cores on the logic layer of a 3D-stacked memory. These
works focus on Machine Learning (ML) training functions (Gao et al., 2015), large-scale graph
processing (Ahn et al., 2015), and in-memory network frameworks (Gao et al., 2015). These
require ARM cores working in conjunction with a Translation Look-aside Buffer (TLB) and rely
on routers for communication between vault. VIMA, on the other hand, is simpler and less costly,
since it does not propose adding cores to the system and does not rely on vault communication to
enhance performance.

Other proposals add specific-purpose cores to the 3D-stacked memory in a NDP
architecture. For instance, NIM (Oliveira et al., 2017), a reconfigurable Neural Network (NN)
accelerator, is similar to VIMA in that it is a NDP architecture that allows for vector operations,
features processing units and a sequencer, and attaches to the crossbar switch. It is, however,
much more complex and expensive as it requires one register bank per vault, while VIMA stores
data in a cache that enables data reuse by design and is accessible from all vaults. Several similar
efforts apply similar principles and offer features such as deactivating Functional Units (FUs) on

28

demand and enhancing the execution of Convolutional Neural Networks (CNNs), but all of these
require adding new modules for each vault of a 3D-stacked memory, which makes them more
expensive and complex than VIMA.

Processing-In-Memory (PIM) techniques do not rely on 3D-stacked memories. They
instead propose modifying conventional Dynamic Random Access Memory (DRAM) memories
and repurposing some of its internal circuits to achieve computation capabilities (Gao et al., 2018;
Deng et al., 2018; Li et al., 2017; Deng et al., 2019; Sim et al., 2018; Sudarshan et al., 2019).
While this is generally not an expensive approach, it is a lot trickier to program and error-prone
than VIMA as the programmer often must take care of low-level implementation details.

4.2 BLOOM FILTERS

In this section we discuss related work pertaining application domains that benefit from
Bloom filters and a number of existing hardware implementations of Bloom filters found in the
literature.

4.2.1 String Matching Applications

Consider a set of = strings (= {B1, B2, B3, B4, ..., B=}. A string matching module observes
an input streamwith a shifting window of G characters. As the stream progresses, (is continuously
queried with the G characters within the window being considered. The module must consistently
and reliably return a result pertaining to whether these G characters match any string found in (.
Naturally, this must also work when the queried data is composed of separate items, as opposed
to a stream.

Due to how efficiently Bloom filters are able to represent and check for membership
in sets of items, they are often used by applications that rely on string matching (Zengin and
Schmidt, 2016). More specifically, because of their space efficiency and constant computation
time, Bloom filters are commonly used to support applications that require real-time processing
and/or must deal with large amounts of data. This can be observed in how widely Bloom filters are
used in domains such as network applications (Broder and Mitzenmacher, 2004), antiviruses (Ho
and Lemieux, 2008), database systems (Patgiri et al., 2019), and genome sequencing (Khairy
et al., 2017).

Network applications must observe the data stream that arrives at a host through the
network link and react according to the content. This is a difficult task, as increasing network
speeds require high throughput from these applications lest they become processing bottlenecks.
Bloom filters may be used to support several kinds of network applications, such as Network
Intrusion Detection Systems (NIDS) (Nourani and Katta, 2007; Meghana et al., 2016), packet
classification services (Nikitakis and Papaefstathiou, 2008), domain blocking (Yu et al., 2010),
and IP address lookup (Byun et al., 2019).

29

NIDS monitor all network activity arriving at a host in order to identify and avoid
possible intrusive or malicious behavior (Nourani and Katta, 2007). Most approaches to this
involve trying to match strings present in the incoming stream with a list of signatures indicating
known unwanted behavior. Anti-viruses, while functioning in a similar way to NIDS, are much
more computationally intensive as they work with much larger sets of signatures that are also
much longer. According to Ho and Lemieux (2008), anti-viruses may cause a 40% slowdown in
boot time and up to 1000% in disk input/output performance. Bloom filters have also been used
to mitigate some of this pressure.

Bloom filters are interesting for genome applications because of the size of the bases
these applications must handle and due to their ability to map data of variable size into a fixed
memory space. The input of such applications are DNA strands which must be matched with
known DNA sequences of arbitrary size. This is the case of DNA sequencing algorithms like
BLASTN, one of the fundamental bioinformatics algorithms (Khairy et al., 2017; Bhalekar
and Chilveri, 2015). DNA strands are combinations of nucleotides (adenine, cytosine, guanine
and thymine) and the sequencing process considers that similar sequences may indicate similar
biological function. Since genomic sequences are very large, possibly requiring several billions of
bases to be considered for sequencing, the string matching steps within algorithms like BLASTN
and k-mer counting must be approached with clever solutions. Several implementations of these
algorithms make use of Bloom filters in their word matching phases (Mcvicar et al., 2017).

Lastly, Bloom filters have also become widely used in Big Data applications and
research. Big Data applications consider, by design, very large data sets. Due to their ability to
deal with large sets in a space-efficient fashion and to check for item membership in constant
time (Gupta and Batra, 2017), Bloom filters are very useful in this domain. They are used mainly
by database applications aimed at reducing the number of items that must be considered for join
operations (Lahiri et al., 2015; Lee et al., 2012; Pagare and Shinde, 2013), data deduplication
tasks to reduce the size of data sets to be processed (Patgiri et al., 2019; Li et al., 2014) and
generally sorting through large streams of data (Kaur and Sood, 2017; Lakshman and Malik,
2010).

4.2.2 Hardware Implementations

Since they are also relatively simple structures, there has been continued interest in
developing hardware implementations of Bloom filters. These implementations are often used as
bandwidth amplifiers or co-processing elements (Fang et al., 2020). Since the hash functions
used by the structure must be independent from one another, they can be executed in parallel,
which enables hardware implementations to operate very efficiently.

Many authors have focused on modeling and describing how Bloom filters can be
implemented on hardware as a general purpose tool to support various kinds of applications. For
instance, Zengin and Schmidt (2016) thoroughly analyze how a general purpose string matching
module must work. The authors apply knowledge over the locality of the input data they consider

30

and use a two filter design to achieve very high throughput and a much lower false positive rate
than that of a conventional Bloom filter. They then describe how such an architecture can be
implemented on hardware.

Khairy et al. (2017) describe a pipelined implementation of a Bloom filter aimed
at architectures with very limited memory resources. They propose the use of high level
synthesis tools to enable the hardware to be designed with high level languages like C, C++
and SystemC. Wada et al. (2018) provide a very thorough discussion of Bloom filters and
describes a very efficient hardware implementation using rolling hash functions and multiple
Bloom filter computation engines. The authors claim their Field Programmable Gate Array
(FPGA)-based implementation of their design outperforms an Intel Core i7-6700K processor
by 227× considering a sequential algorithm for the same task. Cho and Choi (2014) employ a
hardware implementation to support general purpose key-value storing operations, which can be
used for data deduplication, online multiplayer gaming and other internet services. The authors
argue that such a design is preferrable to relational databases as it offers improved scalability.

Other researchers have explored using hardware Bloom filters as a means to achieve
reduced power consumption through acceleration of processing and fewer memory accesses
on devices with energy constraints. Lyons and Brooks (2009) describe such a design aimed at
implementation of a Bloom filter on FPGA or an Application-Specific Integrated Circuit (ASIC)
circuit for Internet of Things (IoT) devices.

Several works can be found regarding hardware implementations of Bloom filters for
more specific purposes and applications. Nourani and Katta (2007), for instance, describe an
architecture that uses a Bloom filter to support a NIDS. NIDSmonitor all network activity arriving
at a host in order to identify and avoid possible intrusive or malicious behavior. By leveraging
dedicated hashing capabilities offered by the processor and some parallelism in the hashing
required in the Bloom filter inquiry, the architecture achieves throughput of up to 100Gbps while
checking for 16000 different string matches. Also in the field of network applications, Nikitakis
and Papaefstathiou (2008) provide a FPGA-based implementation of a Bloom filter design they
call 2sBFCE (Dual Stage Bloom Filter Classification Engine), which they use to classify network
packets according to a set of rules. The design uses little memory space, handles networks rates
of up to 5Gbps, and supports over four thousand classification rules.

Other hardware implementations of Bloom filters that support network applications
include:

• Yu et al. (2010), which uses a FPGA-based implementation of a conventional Bloom
filter to block access to host domains associated with pornographic content;

• Meghana et al. (2016), which employs a counting Bloom filter as a basis for a NIDS;

• and Byun et al. (2019), which uses a vectorized Bloom filter to support IP address
lookup with a high throughput.

31

Ho and Lemieux (2008) employ a Bloom filter variant called Bloomier filter which, on
top of indicating whether a match is found in the filter, also returns which pattern caused the
match. This greatly speeds up the process of checking for false positives. Their implementation
is used for virus scanning. Similarly, Sangeetha and Ramasubramanian (2015) control hardware
signatures used to support parallel programming and otherwise control general resource usage in
multicore systems with a hardware Bloom filter.

K-mer counting is a data reduction tool widely used in DNA sequencing algorithms
to improve performance, reduce redundant memory accesses and remove errors (Pellow et al.,
2017). However, due to the enormous data sets involved in genome sequencing tasks, even this
efficient algorithm encounters issues due to the amount of data. Mcvicar et al. (2017) use an
FPGA-based implementation of a counting Bloom filter to support K-mer counting while also
taking advantage of the parallelism of a 3d-stacked memory. The resulting design achieves a
speedup of up to 18× over a baseline software implementation.

Other works focus on implementations created to support BLASTN, another very
common bioinformatics algorithm used in genome sequencing, a variant of popular sequence
analysis tool Basic Local Alignment Search Tool (BLAST). Bhalekar and Chilveri (2015)
use a FPGA to implement a parallel Bloom filter and a near-perfect hashing strategy that
supports the word matching phase of the BLASTN algorithm. The resulting design is reportedly
computationally efficient as it drastically reduces the amount of data the algorithm must consider
and avoids most of the processing redundancy usually associated with the task. Khairy et al.
(2017) also focus on BLASTN and describes a FPGA-based implementation of a parallel pipelined
partitioned Bloom filter that aids the word matching of the algorithm. The design effectively
removes irrelevant genes from the data set, thus reducing the search space the algorithm must
consider and achieving improved performance over a baseline software implementation.

Table 4.1 lists all research papers that were consulted for studying the subject of Bloom
filter usage. The information listed pertains to title, application (when applicable) and whether
the paper is a survey or a description of an implementation in hardware or software.

32

Ta
be
la
4.
1:

Ta
bl
e
of

pa
pe
rs
.

A
ut
ho

rs
Pa

pe
r
tit
le

Ty
pe

A
pp

lic
at
io
n

(B
ro
de
ra

nd
M
itz
en
m
ac
he
r,
20
04
)

N
et
w
or
k
ap
pl
ic
at
io
ns

of
B
lo
om

fil
te
rs
:A

su
rv
ey

Su
rv
ey

N
et
w
or
k
ap
pl
ic
at
io
ns

(N
ou
ra
ni

an
d
K
at
ta
,2
00
7)

B
lo
om

fil
te
ra

cc
el
er
at
or

fo
rs
tri
ng

m
at
ch
in
g

H
ar
dw

ar
e

G
en
er
al
str

in
g
m
at
ch
in
g

(H
o
an
d
Le

m
ie
ux
,2
00
8)

PE
RG

:A
sc
al
ab
le
FP

G
A
-b
as
ed

pa
tte
rn
-m

at
ch
in
g
en
gi
ne

w
ith

co
ns
ol
id
at
ed

B
lo
om

ie
rfi

lte
rs

H
ar
dw

ar
e

Sy
ste

m
ss

ec
ur
ity

(N
ik
ita
ki
sa

nd
Pa
pa
ef
sta

th
io
u,
20
08
)

A
m
em

or
y-
effi

ci
en
tF

PG
A
-b
as
ed

cl
as
si
fic
at
io
n
en
gi
ne

H
ar
dw

ar
e

N
et
w
or
k
pa
ck
et
cl
as
si
fic
at
io
n

(L
yo
ns

an
d
B
ro
ok
s,
20
09
)

Th
e
de
si
gn

of
a
B
lo
om

fil
te
rh

ar
dw

ar
e
ac
ce
le
ra
to
rf
or

ul
tra

lo
w
po
w
er

sy
ste

m
s

H
ar
dw

ar
e

Lo
w
po
w
er

de
vi
ce
s

(Y
u
et
al
.,
20
10
)

B
lo
ck
in
g
po
rn
og

ra
ph
ic
,i
lle
ga
lw

eb
si
te
sb

y
in
te
rn
et
ho
st
do
m
ai
n
us
in
g
FP

G
A
an
d
B
lo
om

fil
te
r

H
ar
dw

ar
e

H
os
td

om
ai
n
bl
oc
ki
ng

(L
ak
sh
m
an

an
d
M
al
ik
,2
01
0)

C
as
sa
nd
ra

-A
D
ec
en
tra

liz
ed

St
ru
ct
ur
ed

St
or
ag
e
Sy

ste
m

So
ftw

ar
e

B
ig

D
at
a
Pr
oc
es
si
ng

(L
u
et
al
.,
20
11
)

A
fo
re
st-
str

uc
tu
re
d
B
lo
om

fil
te
rw

ith
fla
sh

m
em

or
y

H
ar
dw

ar
e

D
at
a
de
du
pl
ic
at
io
n

(L
ee

et
al
.,
20
12
)

Jo
in

Pr
oc
es
si
ng

U
si
ng

B
lo
om

Fi
lte
ri
n
M
ap
Re

du
ce

So
ftw

ar
e

D
at
ab
as
e
sy
ste

m
s

(P
ag
ar
e
an
d
Sh

in
de
,2
01
3)

Re
co
m
m
en
da
tio

n
Sy

ste
m

us
in
g
B
lo
om

Fi
lte
ri
n
M
ap
Re

du
ce

So
ftw

ar
e

Re
co
m
m
en
da
tio

n
sy
ste

m
s

(F
an

et
al
.,
20
14
)

C
uc
ko
o
fil
te
r:
Pr
ac
tic
al
ly

be
tte
rt
ha
n
B
lo
om

So
ftw

ar
e

G
en
er
al
pu
rp
os
e

(L
ie
ta
l.,

20
14
)

Se
cu
re

de
du
pl
ic
at
io
n
sto

ra
ge

sy
ste

m
sw

ith
ke
yw

or
d
se
ar
ch

So
ftw

ar
e

D
at
a
de
du
pl
ic
at
io
n

(C
ho

an
d
C
ho
i,
20
14
)

A
n
FP

G
A
im

pl
em

en
ta
tio

n
of

hi
gh
-th

ro
ug
hp
ut

ke
y-
va
lu
e
sto

re
us
in
g
B
lo
om

fil
te
r

H
ar
dw

ar
e

D
at
ab
as
e
sy
ste

m
s

(B
ha
le
ka
ra

nd
C
hi
lv
er
i,
20
15
)

A
re
vi
ew

:F
PG

A
ba
se
d
w
or
d
m
at
ch
in
g
sta

ge
of

B
LA

ST
N

H
ar
dw

ar
e

D
N
A
se
qu
en
ci
ng

(L
ah
iri

et
al
.,
20
15
)

O
ra
cl
e
D
at
ab
as
e
In
-M

em
or
y:

A
D
ua
lF

or
m
at
In
-M

em
or
y
D
at
ab
as
e

So
ftw

ar
e

D
at
ab
as
e
sy
ste

m
s

(S
an
ge
et
ha

an
d
R
am

as
ub
ra
m
an
ia
n,
20
15
)

A
su
rv
ey

of
ha
rd
w
ar
e
si
gn
at
ur
e
im

pl
em

en
ta
tio

ns
in

m
ul
ti-
co
re

sy
ste

m
s

Su
rv
ey

H
ar
dw

ar
e
si
gn
at
ur
e
sy
ste

m
s

(M
eg
ha
na

et
al
.,
20
16
)

So
C
im

pl
em

en
ta
tio

n
of

ne
tw
or
k
in
tru

si
on

de
te
ct
io
n
us
in
g
co
un
tin

g
B
lo
om

fil
te
r

H
ar
dw

ar
e

N
et
w
or
k
in
tru

si
on

de
te
ct
io
n

(Z
en
gi
n
an
d
Sc
hm

id
t,
20
16
)

A
fa
st
an
d
ac
cu
ra
te
ha
rd
w
ar
e
str

in
g
m
at
ch
in
g
m
od
ul
e
w
ith

B
lo
om

fil
te
rs

H
ar
dw

ar
e

G
en
er
al
str

in
g
m
at
ch
in
g

(M
cv
ic
ar

et
al
.,
20
17
)

K-
m
er

co
un
tin

g
us
in
g
B
lo
om

fil
te
rs
w
ith

an
FP

G
A
-a
tta
ch
ed

H
M
C

H
ar
dw

ar
e

G
en
om

e
se
qu
en
ci
ng

(G
up
ta
an
d
B
at
ra
,2
01
7)

A
sh
or
ts
ur
ve
y
on

B
lo
om

fil
te
ra

nd
its

va
ria

nt
s

Su
rv
ey

G
en
er
al
pu
rp
os
e

(K
ha
iry

et
al
.,
20
17
)

B
lo
om

fil
te
ra

cc
el
er
at
io
n:

A
hi
gh

le
ve
ls
yn
th
es
is
ap
pr
oa
ch

H
ar
dw

ar
e

G
en
er
al
pu
rp
os
e

(K
au
ra

nd
So

od
,2
01
7)

Effi
ci
en
tr
es
ou
rc
e
m
an
ag
em

en
ts
ys
te
m

ba
se
d
on

4v
so

fb
ig

da
ta
str
ea
m
s

So
ftw

ar
e

B
ig

D
at
a
Pr
oc
es
si
ng

(P
el
lo
w
et
al
.,
20
17
)

Im
pr
ov
in
g
B
lo
om

fil
te
rp

er
fo
rm

an
ce

on
se
qu
en
ce

da
ta
us
in
g
k-
m
er

B
lo
om

fil
te
rs

H
ar
dw

ar
e

G
en
om

e
se
qu
en
ci
ng

(W
ad
a
et
al
.,
20
18
)

Effi
ci
en
tb
yt
e
str
ea
m

pa
tte
rn

te
st
us
in
g
B
lo
om

fil
te
rw

ith
ro
lli
ng

ha
sh

fu
nc
tio

ns
on

th
e
FP

G
A

H
ar
dw

ar
e

G
en
er
al
pu
rp
os
e

(P
at
gi
ri
et
al
.,
20
19
)

Ro
le
of

B
lo
om

fil
te
ri
n
bi
g
da
ta
re
se
ar
ch
:A

su
rv
ey

Su
rv
ey

B
ig

da
ta

(B
yu
n
et
al
.,
20
19
)

Ve
ct
or
ed
-B
lo
om

fil
te
ri
m
pl
em

en
te
d
on

FP
G
A
fo
rI
P
ad
dr
es
sl
oo
ku

p
H
ar
dw

ar
e

IP
ad
dr
es
sl
oo
ku

p
(S
an
to
se

ta
l.,

20
20
)

U
m

M
od
el
o
de

In
de
xa
çã
o
e
re
cu
pe
ra
A
çã
o
pr
iv
ad
a
de

D
oc
um

en
to
s

So
ftw

ar
e

D
at
a
sto

ra
ge

33

5 PROPOSAL

In this chapter, we present our proposal, establish a hypothesis, set objectives, and
discuss our methodology for reaching such objectives and thus prove our hypothesis.

5.1 HYPOTHESIS AND OBJECTIVES

Looking to improve the performance and energy efficiency of computer applications
that use Bloom filters for checking data items for membership of a set, we formulate the following
hypotheses:

• It is feasible to implement a Bloom filter structure on a NDP-enabled 3D-stacked
memory device;

• Such an implementation can be used by applications for membership check operations;

• Such an implementation will yield faster execution of applications that take advantage
of it;

• Such an implementation will yield reduced energy consumption by applications that
take advantage of it;

For motivation, we consider an application that uses a software implementation of a
Bloom filter to check numerous input data items for membership in an extensive data set. If one
considers execution on a regular x86 architecture, the task is completed by running Algorithm
1. Considering, for instance, the baseline system described in Table 3.1 most memory requests
yield a latency of several hundreds of cycles by checking all cache levels and accessing the main
memory to locate each 64 B block of input data and subsequently transfer it back to the processor,
where the verification of each item produces additional latency.

Algorithm 1:Membership check with bloom filter
Result: A list of data items that belong to the set
load Bloom filter from memory
while there are unchecked items do

load next item from memory
check Bloom filter for membership
if Bloom filter result is positive then

add item to result list
end

end
return list of data items belonging to the set

34

In contrast, if one considers a hardware implementation proposal of the same Bloom
filter, improvements in performance may come from a number of sources: i) When a VIMA
instruction must access modified data within the cache hierarchy, to guarantee cache coherence,
this data is written back to the memory before the instruction can be executed. However, when the
data is not in the cache, VIMA avoids the latency of checking the cache hierarchy by bypassing it
completely. This bypass should contribute to better overall performance when we already know
that the data is not in any of the cache levels. This behavior is particularly advantageous when
the data set’s size exceeds the last level cache size. In this situation, a traditional architecture will
experience a high cache miss rate, which an NDP approach will avoid, therefore saving time
and energy. ii) Since all Bloom filter membership checks would be executed in the memory,
only possible false positives would have to be handled by the processor, meaning much less data
is moved between memory and processor, which should contribute to decreasing the overall
energy consumption by the system. iii) The use of vector operations allows both for better use
of parallel access to data within the memory and for processing a large number data items per
single operation, as VIMA is capable of operating over 8192 B vectors, which should contribute
to performance and efficient utilization of resources.

In light of these hypotheses and motivation, our main objective is to provide a
hardware implementation of a Bloom filter that can be used by applications that deal with
large data sets and can benefit from an efficient hardware implementation to aid this task.
We believe that, by leveraging the capabilities of a Near-Data Processing (NDP) architecture,
we can provide an accelerator that achieves both improved processing speed and lower energy
consumption. By providing such an accelerator, as the task relies on this new element for
processing, rather than on a processor core, we wish to help mitigate performance limitations
when processing large amounts of data caused by issues such as the von Neumann bottleneck and
the memory wall.

5.2 INITIAL DESIGN

We have devised an initial idea considering the capabilities of Vector-In-Memory
Architecture (VIMA). While this design is still incomplete, it should illustrate one of the
possibilities for implementation of a Bloom filter structure considering this type of architecture.

This initial design considers support string matching applications, which is in keeping
with most common uses of Bloom filters found in the literature, but neither our proposal nor
this specific algorithm are limited to any one type of data. String hashing functions are defined
generically by Ramakrishna and Zobel (1997) as Algorithm 3. This algorithm considers a string
B = 21, 22, ..., 2< of < characters, a seed E and a resulting hash ℎ generated after subsequent
transformations considering each character of B.

The initial value of ℎ is generated by an 8=8C function that is dependent of seed E and
subsequently transformed by a BC4? function that considers the current state of ℎ and the next

35

Algorithm 2: Generic String Hashing Function
ℎ0← init(v)
for each character 28 in s do

set ℎ8 ← step (i, ℎ8−1, 28)
end
return h← final (ℎ<, E)

character 28 of the string being hashed. When all characters have been consumed, a 5 8=0;

function generates the final ℎ considering the last internal state ℎ< and the original seed. By
defining 8=8C, BC4? and 5 8=0;, one sets a string hashing function.

We have chosen to implement a shift-add-xor hash function, due to both its simplicity
and its efficacy (Ramakrishna and Zobel, 1997). This is illustrated by its use on related work that
employs the function as part of a hardware Bloom filter implemented on Field Programmable
Gate Array (FPGA) (Mcvicar et al., 2017). The function defines 8=8C, BC4? and 5 8=0; as follows:

• 8=8C (E) = E

• BC4?(8, ℎ, 2) = ℎ ⊕ (! (ℎ) + '(ℎ) + 2)

• 5 8=0; (ℎ, E) = ℎ | |)

This definition of the 8=8C function refrains from applying any transformations to the seed.
The BC4? function uses shift (denoted by functions L and R), add, and exclusive or operations
to modify each intermediate ℎ8 and the 5 8=0; function truncates the last internal value of ℎ
considering size constraint) to generate the result.

VIMA uses NEON ARM functional units for processing and so we have access to
several instructions designed to support vector operations. Thus, to implement such an algorithm
for the VIMA architecture, we first use the VLD instructions from the NEON ARM Instruction
Set Architecture (ISA) to split strings into individual characters. This operation loads 64-bit
chunks of data into NEON registers with optional deinterleaving, allowing data splits of different
sizes. There are four distinct VLD variants available in the ISA, each pertaining to a different
deinterleaving option (ARM, 2020):

• VLD1 is the simplest option, which applies no deinterleaving and thus simply loads 64
bits of data into a register as stored in the memory;

• VLD2, which deinterleaves data into odd and even elements in two separate registers;

• VLD3, which does the same for three registers;

• and VLD4, for four registers.

Figure 5.1 shows an example of the results of this deinterleaving on RGB image data.
Each of the instructions with this separation behavior also allow us to configure how many bits

36

Figura 5.1: Data deinterleaving with the VLD operation.

must be considered per element, with 8-, 16- and 32-bit options. Considering this information,
we have devised a Bloom filter design that leverages the capabilities of the architecture with
which we are currently working and enables possibilities for further research on this topic. We
propose a modification such that, when using VLD instructions from the NEON ISA, we are
able to place results inside the VIMA cache, thus allowing the system to deinterleave data into
multiple distinct VIMA vectors. Considering 8-bit characters, this enables our implementation to
use the VLD4 instruction with 8-bit deinterleaving, thus placing characters separately in vectors.
Since the instruction loads 64 bits of data, every load will transfer eight characters of a string,
deinterleaving them in four vectors in a round-robin pattern.

If we assume 8KB VIMA vectors of 32-bit data points, we are able to hold in cache
the first eight characters of up to 1024 strings, with two characters of each string per vector. To
perform the shift-add-xor hash function would require then generating an initial 32-bit value
placing it in every index of another vector. This vector will house every intermediate state of
the hash. Two more vectors are necessary for the shift-left and shift-right operations used in the
algorithm. Figure 5.2 illustrates this set of vectors. At this point, the algorithm can be performed
with existing VIMA vector operations, ending with two distinct hash values for each string as
a result. These values can then be used to address parallel hash tables or otherwise processed
for any desired intent. Algorithm 3 describes this vectorized version of the shift-add-xor hash
function.

Algorithm 3: Vectorized shift-add-xor Hashing Function
h← init
for each character vector E8 do

0DG1← L (ℎ)
0DG2← R (ℎ)
0DG1← 0DG1 + 0DG2
0DG1← 0DG1 + E8
h← h ⊕ 0DG1

end

37

Figura 5.2: Initial state of vectorized data for the shift-add-xor hash function. h holds all intermediate hash values,
v1-4 hold the string characters and aux1-2 are used in the shifting operations.

When implementing a Bloom filter insertion or query operation, to set multiple
independent hash functions it would suffice to set multiple initial 32-bit values for the hash vector
and duplicate both these values and the string characters in their respective vectors as needed to
achieve any number of distinct of independent hash functions. This works because every different
initial hash value generates a different result and, thus, a distinct hash function. Figure 5.3 shows
an example of such vectors using three hash functions. The algorithm stays the same, but since
this requires some data redundancy, each vector holds characters of fewer strings.

Figura 5.3: Initial state of vectorized data for the shift-add-xor hash function. The three different initial values values
in h mean three independent hash functions are computed.

The resulting vector holds in each data slot the address of a single bit in the Bloom filter
that must be modified (for item insertion) or consulted (for inquiry). This could possibly be
performed with scatter and gather operations, respectively, for instance. Since these operations
are not yet available in the architecture we are considering, we have yet to devise how any
remaining steps of the process will be performed. There is also the issue of, with this strategy,

38

each string generating two hash values instead of one, which will also be considered and addressed
in future steps of the research.

While we have considered string matching applications here, this approach can be
applied to other data point sizes and thus be used for any other purpose. This initial design
idea illustrates how the current capabilities of the VIMA design can be leveraged to implement
a Bloom filter. We believe this design lays the groundwork on how any architecture with
similar features can be implemented and may serve as a basis for our research into how such an
implementation can support processing of any application that can benefit from Bloom filters.

We have yet to define a number of details that are important and shall be necessary for
a functioning implementation of any kind, regarding Bloom filter configurations, architectural
details and communication with applications. The following is a non-exhaustive list of such
details:

• What size constraints will be considered for the Bloom filter;

• What data point sizes will be supported;

• How many independent hash functions will be considered;

• What details of the data structure will be adjustable by applications;

• Where the Bloom filter and/or any related operation results will be stored and accessed;

• How applications are going to access this solution;

All of these will be considered as we progress in the research. While our initial design
considers the possibilities provided by VIMA, we foresee it may be necessary to modify the
architecture by including additional components, adding new instructions to its ISA, or to propose
an altogether new architecture.

5.3 RESEARCH PLAN

Here we discuss our methodology for achieving our main objective. We have devised
a plan for the next steps of our research that we believe will be successful in confirming our
hypothesis:

• Consider Bloom filter variants: as discussed in Section 4.2, there are many Bloom
filter variants that deviate from the original idea as to modify the data structure and thus
add features that may be desirable for various reasons. By studying these variants, we
believe we will learn what features would be feasible and desirable for our eventual
design.

39

• Consider existing hardware implementations of Bloom filters: we cited a number
of existing hardware implementations in Section 4.2. We believe it will be useful to
consider these successful cases as guides or references for our own implementation.

• Propose an NDP implementation: we believe at this point we will be able to propose
an implementation that can act as a proof of concept. This implementation shall be
designed within our in-house simulator, which we discuss on Subsection 5.5.1, which
will also be used for testing and validation.

• Analyze and select possible target applications: after generating a proof-of-concept,
we shall move onto which applications we can assist with our implementation. Once we
learn more about the way these applications function and use their data, we believe will
be able to select which ones we can efficiently support.

• Adjust our NDP implementation according to selected target applications: we
predict our implementation will have to be somewhat tweaked in order to better assist
the target applications.

• Migrate target applications to use the proposed implementation: by using the binary
generation capabilities of our in-house simulator environment as will be discussed in
Subsection 5.5.2, we plan to migrate the target application(s) so that we are able to test
and validate our implementation.

• Analyze obtained results in comparison with a baseline architecture: we will then
compare our results with those of an equivalent implementation using a traditional x86
architecture.

5.4 PROPOSED SCHEDULE

We envision the following steps for the development of this research:
Activity 1: Study existing general-purpose Bloom filter variants.
Activity 2: Study existing hardware implementations of Bloom filters.
Activity 3: Propose a NDP implementation and create a proof of concept.
Activity 4: Write and submit a research paper with our proposal and partial results.
Activity 5: Analyze and select possible target applications.
Activity 6: Adjust NDP implementation considering optimal data usage and storage patterns for
the target applications.
Activity 7: Migrate target applications to use the proposed implementation.
Activity 8: Analyze the obtained results compared to a baseline architecture.
Activity 9: Write and submit a research paper with the obtained results.
Activity 10: Write the thesis and prepare the presentation for defense.

We plan to submit the research papers to one of the following conferences/journals:

40

Tabela 5.1: Planning chart.

2021 2022
Activities J F M A M J J A S O N D J F M A M J
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10

• International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD);

• International Conference on Parallel Architectures and Compilation Techniques (PACT);

• International Symposium on Computer Architecture (ISCA);

• International Symposium on Circuits and Systems (ISCAS);

• Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD);

• International Symposium on High Performance Computer Architecture (HPCA);

• International Symposium on Microarchitecture (MICRO);

• Design, Automation and Test in Europe Conference and Exhibition (DATE);

• International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS);

• CCF Transactions on High Performance Computing;

• Advances in Electrical and Computer Engineering;

• Journal of Systems Architecture;

• IET Computers and Digital Techniques;

• ACM Journal on Emerging Technologies in Computing Systems;

• ACM Transactions on Architecture and Code Optimization;

41

5.5 METHODOLOGY

In this section we present the main tools that we plan to use for the evaluation of our
proposal.

5.5.1 Ordinary Computer Simulator (OrCS)

Ordinary Computer Simulator (OrCS) is our in-house simulator, a simplified version
of Simulator of Non-Uniform Cache Architectures (SiNUCA) (Alves et al., 2015), and it is a
trace-driven simulator based on the x86 architecture. Since it is a trace-driven simulator, as
opposed to a full-system simulator, it does not simulate the execution of instructions, but rather
considers the overall behavior of the architecture components and latencies. The traces it uses
are low-level descriptions of the execution of programs and they can be obtained through the use
of binary instrumentation tools or created manually.

OrCS includes a tracing application that uses the Pin tool from Intel (Bach et al., 2010)
to generate application traces compatible with the simulator. The application is analyzed by the
tool during execution and corresponding trace files are generated considering the ISA supported
by the simulator.

OrCS traces are composed of three separate files pertaining to distinct aspects of the
execution of a program:

• Static trace: describes the binary of the application in assembly instructions organized in
basic blocks. Each instruction includes an instruction identifier, opcode type, instruction
address and size, read and write registers count and numbers, base and index registers,
memory access addresses (if applicable), etc.

• Dynamic trace: stores an ordered list of basic block numbers that makes up the control
flow of the execution the trace describes. Basic block identifiers consider the numbering
defined in the static trace.

• Memory trace: lists all memory addresses referred to by the program during the entire
execution. Each line includes whether the operation was a read or a write, what address
it refers to, how much data was requested and in what basic block the operation happens.

5.5.2 Binary Generation

VIMA is composed by a series of vector units providing a vector ISA based on ARM
NEON vector instructions (ARM, 2020). To program using the VIMA ISA we developed
Intrinsics-VIMA, a library based on Intel and ARM intrinsics (Lomont, 2011) available in
C and C++ language. The intrinsic libraries enable low-level code optimization through
routine calls written in assembly. When the program calls any of these routines, the compiler
embeds their Single Instruction Multiple Data (SIMD) instructions directly into the assembly

42

code (Coorp., 2009; Cordeiro et al., 2017). Intrinsics-VIMA routines provide signed and unsigned
operations represented in 32 and 64-bit for integer and floating-point single and double precision
representations. Whenever our simulator finds an Intrinsics-VIMA routine during execution, it
replaces with the equivalent VIMA instruction.

Previous work that integrates vectors near memory requires programmers to fine-tune
the code to use the available registers or carefully allocate data inside specific memory banks
and vaults. Intrinsics-VIMA simplifies the programming task by allowing developers to include
VIMA function calls on the main code, as it works with any C and C++ library.

43

REFERÊNCIAS

Ahn, J., Hong, S., Yoo, S., Mutlu, O., and Choi, K. (2015). A scalable processing-in-memory
accelerator for parallel graph processing. In Int. Symp. on Computer Architecture.

Al Hasib, A. (2018). Energy efficient computing on multi-core processors: Vectorization and
compression techniques.

Alves, M. A. Z., Diener, M., Santos, P. C., and Carro, L. (2016). Large vector extensions inside
the hmc. In Design, Automation & Test in Europe Conf.

Alves, M. A. Z., Villavieja, C., Diener, M., Moreira, F. B., and Navaux, P. O. A. (2015). Sinuca:
A validated micro-architecture simulator. In Int. Conf. on High Performance Computing and
Communications.

AMD (2015). DDR5 and HBM comparison. https://www.amd.com/system/files/
documents/high-bandwidth-memory-hbm.pdf. [01-Jul-2019].

ARM (2020). Arm cortex-a57 technical reference manuals. http://infocenter.arm.
com/help/topic/com.arm.doc.subset.cortexa.a57/index.html.

Bach, M., Charney, M., Cohn, R., Demikhovsky, E., Devor, T., Hazelwood, K., Jaleel, A., et al.
(2010). Analyzing parallel programs with pin. Computer, 43.

Balasubramonian, R., Chang, J., Manning, T., Moreno, J. H., Murphy, R., Nair, R., and Swanson,
S. (2014). Near-data processing: Insights from a micro-46 workshop. IEEE Micro, 34.

Bhalekar, S. R. and Chilveri, P. (2015). A review: Fpga based word matching stage of blastn. In
2015 International Conference on Pervasive Computing (ICPC), pages 1–4. IEEE.

Boroumand, A., Ghose, S., Kim, Y., Ausavarungnirun, R., Shiu, E., et al. (2018). Google
workloads for consumer devices: Mitigating data movement bottlenecks. In Int. Conf. on
Architectural Support for Programming Languages and Operating Systems.

Broder, A. and Mitzenmacher, M. (2004). Network applications of bloom filters: A survey.
Internet mathematics, 1(4):485–509.

Byun, H., Li, Q., and Lim, H. (2019). Vectored-bloom filter implemented on fpga for ip address
lookup. In 2019 International Conference on Electronics, Information, and Communication
(ICEIC), pages 1–4. IEEE.

Chang, K. K. (2017). Understanding and improving the latency of dram-based memory systems.
arXiv preprint arXiv:1712.08304.

https://www.amd.com/system/files/documents/high-bandwidth-memory-hbm.pdf
https://www.amd.com/system/files/documents/high-bandwidth-memory-hbm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexa.a57/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexa.a57/index.html

44

Cho, J. M. and Choi, K. (2014). An fpga implementation of high-throughput key-value store
using bloom filter. In Technical Papers of 2014 International Symposium on VLSI Design,
Automation and Test, pages 1–4. IEEE.

Coorp., I. (2009). Intel 64 and ia-32 architectures optimization reference manual.

Cordeiro, A. S., Kepe, T. R., Tomé, D. G., Almeida, E. C., and Alves, M. A. Z. (2017). Intrinsics-
hmc: An automatic trace generator for simulations of processing-in-memory instructions.
Simp. em Sistemas Computacionais de Alto Desempenho.

Deng, Q., Jiang, L., Zhang, Y., Zhang, M., and Yang, J. (2018). Dracc: a dram based accelerator
for accurate cnn inference. In Design Automation Conf.

Deng, Q., Zhang, Y., Zhang, M., and Yang, J. (2019). Lacc: Exploiting lookup table-based fast
and accurate vector multiplication in dram-based cnn accelerator. In Design Automation Conf.

Ebrahimi, E., Mutlu, O., Lee, C. J., and Patt, Y. N. (2009). Coordinated control of multiple
prefetchers in multi-core systems. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 316–326.

Efnusheva, D., Cholakoska, A., and Tentov, A. (2017). A survey of different approaches for
overcoming the processor-memory bottleneck. International Journal of Computer Science
and Information Technology, 9(2):151–163.

Elliott, D. G., Stumm, M., Snelgrove, W. M., Cojocaru, C., and McKenzie, R. (1999). Com-
putational ram: Implementing processors in memory. IEEE Design & Test of Computers,
16.

Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K., and Burger, D. (2011). Dark
silicon and the end of multicore scaling. In Int. Symp. on Computer Architecture.

Fan, B., Andersen, D. G., Kaminsky, M., and Mitzenmacher, M. D. (2014). Cuckoo filter:
Practically better than bloom. In Proceedings of the 10th ACM International on Conference on
emerging Networking Experiments and Technologies, pages 75–88.

Fang, J., Mulder, Y. T., Hidders, J., Lee, J., and Hofstee, H. P. (2020). In-memory database
acceleration on fpgas: a survey. The VLDB Journal, 29(1):33–59.

Gao, D., Shen, T., and Zhuo, C. (2018). A design framework for processing-in-memory
accelerator. In Int. Workshop on System Level Interconnect Prediction.

Gao, M., Ayers, G., and Kozyrakis, C. (2015). Practical near-data processing for in-memory
analytics frameworks. In Int. Conf. on Parallel Arch. and Compilation.

45

Ghose, S., Hsieh, K., Boroumand, A., Ausavarungnirun, R., and Mutlu, O. (2018). Enabling
the adoption of processing-in-memory: Challenges, mechanisms, future research directions.
arXiv preprint arXiv:1802.00320.

Gupta, D. and Batra, S. (2017). A short survey on bloom filter and its variants. In 2017
International Conference on Computing, Communication and Automation (ICCCA), pages
1086–1092. IEEE.

Hashemi, M., Ebrahimi, E., Mutlu, O., Patt, Y. N., et al. (2016). Accelerating dependent cache
misses with an enhanced memory controller. In Int. Symp. on Computer Architecture.

Ho, J. T. L. and Lemieux, G. G. (2008). Perg: A scalable fpga-based pattern-matching engine
with consolidated bloomier filters. In 2008 International Conference on Field-Programmable
Technology, pages 73–80. IEEE.

Hrusca, J. (2015). PIM comparison. https://www.extremetech.com/computing/
197720-beyond-ddr4-understand-the-differences-between-wide-

io-hbm-and-hybrid-memory-cube. [01-Jul-2019].

Hybrid Memory Cube Consortium (2013). Hybrid memory cube specification rev. 2.0. http:
//www.hybridmemorycube.org/.

Hybrid Memory Cube Consortium (2014). Hybrid memory cube specification 2.1. http:
//www.hybridmemorycube.org/.

Jacob, B., Wang, D., and Ng, S. (2010). Memory systems: cache, DRAM, disk. Morgan
Kaufmann.

Jeddeloh, J. and Keeth, B. (2012). Hybrid memory cube new DRAM architecture increases
density and performance. In Symp. on VLSI Technology.

Jun, H., Nam, S., Jin, H., Lee, J.-C., Park, Y. J., and Lee, L. J. (2017). High-bandwidth memory
(hbm) test challenges and solutions. IEEE Design & Test, 34.

Kaur, N. and Sood, S. K. (2017). Efficient resource management system based on 4vs of big data
streams. Big data research, 9:98–106.

Khairy, R., Safar, M., and El-Kharashi, M. W. (2017). Bloom filter acceleration: A high level
synthesis approach. In 2017 IEEE 30th Canadian Conference on Electrical and Computer
Engineering (CCECE), pages 1–6. IEEE.

Korikawa, T., Kawabata, A., He, F., and Oki, E. (2020). Packet processing architecture using
last-level-cache slices and interleaved 3d-stacked dram. IEEE Access, 8.

https://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube
https://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube
https://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube
http://www.hybridmemorycube.org/
http://www.hybridmemorycube.org/
http://www.hybridmemorycube.org/
http://www.hybridmemorycube.org/

46

Kwon, Y., Yu, H., Peter, S., Rossbach, C. J., and Witchel, E. (2016). Coordinated and efficient
huge page management with ingens. In USENIX Symp. on Operating Systems Design and
Implementation.

Lahiri, T., Chavan, S., Colgan, M., Das, D., Ganesh, A., Gleeson, M., Hase, S., Holloway, A.,
Kamp, J., Lee, T.-H., et al. (2015). Oracle database in-memory: A dual format in-memory
database. In 2015 IEEE 31st International Conference on Data Engineering, pages 1253–1258.
IEEE.

Lakshman, A. and Malik, P. (2010). Cassandra: a decentralized structured storage system. ACM
SIGOPS Operating Systems Review, 44(2):35–40.

Lee, R. B. (1995). Realtime mpeg video via software decompression on a pa-risc processor.
In Digest of Papers. COMPCON’95. Technologies for the Information Superhighway, pages
186–192. IEEE.

Lee, T., Kim, K., and Kim, H.-J. (2012). Join processing using bloom filter in mapreduce. In
Proceedings of the 2012 ACM Research in Applied Computation Symposium, pages 100–105.

Lee, Y. S., Kim, K. M., Lee, J. H., Choi, J. H., and Chung, S. W. (2019). A high-performance
processing-in-memory accelerator for inline data deduplication. In Int. Conf. on Computer
Design.

Li, J., Chen, X., Xhafa, F., and Barolli, L. (2014). Secure deduplication storage systems with
keyword search. In 2014 IEEE 28th International Conference on Advanced Information
Networking and Applications, pages 971–977. IEEE.

Li, S., Niu, D., Malladi, K. R., Zheng, H., Brennan, B., and Xie, Y. (2017). Drisa: A dram-based
reconfigurable in-situ accelerator. In Int. Symp. on MicroArch.

Lomont, C. (2011). Introduction to intel advanced vector extensions. Intel White Paper, pages
1–21.

Lu, G., Debnath, B., and Du, D. H. (2011). A forest-structured bloom filter with flash memory.
In 2011 IEEE 27th Symposium on Mass Storage Systems and Technologies (MSST), pages 1–6.
IEEE.

Lyons, M. J. and Brooks, D. (2009). The design of a bloom filter hardware accelerator for ultra
low power systems. In Proceedings of the 2009 ACM/IEEE international symposium on Low
power electronics and design, pages 371–376.

Mcvicar, N., Lin, C.-C., and Hauck, S. (2017). K-mer counting using bloom filters with an fpga-
attached hmc. In 2017 IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 203–210. IEEE.

47

Meghana, V., Suresh, M., Sandhya, S., Aparna, R., and Gururaj, C. (2016). Soc implementation
of network intrusion detection using counting bloom filter. In 2016 IEEE International
Conference on Recent Trends in Electronics, Information & Communication Technology
(RTEICT), pages 1846–1850. IEEE.

Mutlu, O., Ghose, S., Gómez-Luna, J., and Ausavarungnirun, R. (2019). Enabling practical
processing in and near memory for data-intensive computing. In Design Automation Conf.

Nai, L. and Kim, H. (2015). Instruction offloading with hmc 2.0 standard: A case study for graph
traversals. In Proceedings of the 2015 International Symposium on Memory Systems, pages
258–261.

Nikitakis, A. and Papaefstathiou, L. (2008). A memory-efficient fpga-based classification engine.
In 2008 16th International Symposium on Field-Programmable Custom Computing Machines,
pages 53–62. IEEE.

Nourani, M. and Katta, P. (2007). Bloom filter accelerator for string matching. In 2007 16th
International Conference on Computer Communications and Networks, pages 185–190. IEEE.

Oliveira, G. F., Santos, P. C., Alves, M. A. Z., and Carro, L. (2017). Nim: An hmc-based machine
for neuron computation. In Int. Symp. on Applied Reconfigurable Computing.

Olmen, J. V., Mercha, A., Katti, G., et al. (2008). 3D stacked IC demonstration using a through
silicon via first approach. In Int. Electron Devices Meeting.

Pagare, R. and Shinde, A. (2013). Recommendation system using bloom filter in mapreduce.
International Journal of Data Mining & Knowledge Management Process, 3(6):127.

Patgiri, R., Nayak, S., and Borgohain, S. K. (2019). Role of bloom filter in big data research: A
survey. arXiv preprint arXiv:1903.06565.

Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Thomas, R.,
and Yelick, K. (1997). A case for intelligent ram. IEEE Micro, 17.

Pawlowski, J. T. (2011). Hybrid memory cube (hmc). Hot Chips, 23.

Pellow, D., Filippova, D., and Kingsford, C. (2017). Improving bloom filter performance on
sequence data using k-mer bloom filters. Journal of Computational Biology, 24(6):547–557.

Ramakrishna, M. and Zobel, J. (1997). Performance in practice of string hashing functions. In
Database Systems For Advanced Applications’ 97, pages 215–223. World Scientific.

Sangeetha, R. and Ramasubramanian, N. (2015). A survey of hardware signature implemen-
tations in multi-core systems. In 2015 3rd International Conference on Signal Processing,
Communication and Networking (ICSCN), pages 1–5. IEEE.

48

Santos, P. C., Oliveira, G. F., Tomé, D. G., Alves, M. A. Z., Almeida, E. C., and Carro, L. (2017).
Operand size reconfiguration for big data processing in memory. In Design, Automation &
Test in Europe Conf.

Santos, W. F., Felipe, C. H. F., and Viana, T. B. (2020). Um modelo de indexação e recuperação
privada de documentos. Revista Acta Kariri-Pesquisa e Desenvolvimento, 2(1).

Schaller, R. R. (1997). Moore’s law: past, present and future. IEEE spectrum, 34(6):52–59.

Sim, J., Seol, H., and Kim, L.-S. (2018). Nid: processing binary convolutional neural network in
commodity dram. In Int. Conf. on Computer-Aided Design.

Sudarshan, C., Lappas, J., Ghaffar, M. M., Rybalkin, V., Weis, C., Jung, M., and Wehn, N. (2019).
An in-dram neural network processing engine. In Int. Symp. on Circuits and Systems.

Tomé, D. G., Santos, P. C., Carro, L., Almeida, E. C., and Alves, M. A. Z. (2018). Hipe: Hmc
instruction predication extension applied on database processing. In Design, Automation &
Test in Europe Conf.

Transcend (2014). DDR comparison. https://www.transcend-info.com/Support/
FAQ-296. [01-Jul-2019].

von Neumann, J. (1945). First draft of a report on the edvac. contract no. w-670-ord-4926.
The Origins of Digital Computers: Selected Papers, 3rd edn (Berlin/Heidelberg/New York:
Springer-Verlag).

Wada, T., Matsumura, N., Nakano, K., and Ito, Y. (2018). Efficient byte stream pattern test using
bloom filter with rolling hash functions on the fpga. In 2018 Sixth International Symposium
on Computing and Networking (CANDAR), pages 66–75. IEEE.

Wulf, W. A. and McKee, S. A. (1995). Hitting the memory wall: implications of the obvious.
ACM SIGARCH Computer Architecture News, 23.

Xie, C., Song, S. L., Wang, J., Zhang, W., and Fu, X. (2017). Processing-in-memory enabled
graphics processors for 3d rendering. In Int. Symp. onHigh Performance Computer Architecture.

Yu, H., Cong, R., Chen, L., and Lei, Z. (2010). Blocking pornographic, illegal websites by
internet host domain using fpga and bloom filter. In 2010 2nd IEEE InternationalConference
on Network Infrastructure and Digital Content, pages 619–623. IEEE.

Zengin, S. and Schmidt, E. G. (2016). A fast and accurate hardware string matching module with
bloom filters. IEEE Transactions on Parallel and Distributed Systems, 28(2):305–317.

https://www.transcend-info.com/Support/FAQ-296
https://www.transcend-info.com/Support/FAQ-296

MINISTÉRIO DA EDUCAÇÃO
SETOR DE CIENCIAS EXATAS
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO INFORMÁTICA -
40001016034P5

DECLARAÇÃO DE MATRÍCULA
Data da emissão: 27/03/2021

Declaro para os devidos fins que SAIRO RAONÍ DOS SANTOS (CPF 01433292432), é aluno regularmente
matriculado (matrícula número 201800110763) no curso de Doutorado do Programa de Pós-Graduação em
INFORMÁTICA da UFPR, sob o número 40001016034P5. O referido aluno ingressou no Programa em 23/07/2018,
com previsão para defesa da tese em 23/07/2022. Por ser verdade firmo a presente declaração.

Secretaria do Programa de Pós Graduação em
 INFORMÁTICA

Rua Cel. Francisco H. dos Santos, 100 - Centro Politécnico da UFPR - CURITIBA - Paraná - Brasil
CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br

https://www.prppg.ufpr.br/siga/visitante/autenticacao.jsp - Código para autenticação: Zf1u7ChUt

MINISTÉRIO DA EDUCAÇÃO
SETOR DE CIENCIAS EXATAS
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO INFORMÁTICA -
40001016034P5

Data de emissão: 27/03/2021

Nome: SAIRO RAONÍ DOS SANTOS Documento: 01433292432

Data de Nascimento: 01/01/1990 Sexo: Masculino Naturalidade: NÃO INFORMADO - Rio Grande do Norte

Filiação: Maria Elineuza dos Santos

Curso: Doutorado em INFORMÁTICA Data de Matrícula: 23/07/2018 Previsão de Titulação: 23/07/2022
Curso Reconhecido pelo Parecer nº 102/2011, D.O.U de 13/09/2012
Área de Concentração: CIÊNCIA DA COMPUTAÇÃO Linha de Pesquisa: Redes e Sistemas Distribuídos
Lingua Estrangeira:
Orientador: MARCO ANTONIO ZANATA ALVES
Titulo da tese:

HISTÓRICO ESCOLAR

Código Disciplina - Turma CH/CR Conceito Per./Ano Docente

Obrigatórias

INFO-7042 SEMINÁRIOS EM INFORMÁTICA II - INFO - 7042 30/2 A 2° Sem./2018 ROBERTO PEREIRA

Eletivas

INFO-7030 OFICINA DE SISTEMAS DISTRIBUÍDOS - INFO - 7030 60/4 9.0/A 2° Sem./2018 CARLOS ALBERTO MAZIERO, ELIAS PROCÓPIO

DUARTE JÚNIOR, LUIS CARLOS ERPEN DE BONA

INFO-7005 ARQUITETURA DE COMPUTADORES - INFO - 7005 60/4 10.0/A 2° Sem./2018 MARCO ANTONIO ZANATA ALVES

INFO-7017 INTELIGÊNCIA ARTIFICIAL - INFO7017 60/4 9.5/A 1° Sem./2019 FABIANO SILVA

Validações de Créditos

Código Disciplina CH/CR Conceito Crédito (Tipo) Ano - Instituição

- ENGENHARIA DE SOFTWARE 60/4 B Eletivo

(Aproveitamento)

2018 - UFERSA

- INTELIGENCIA COMPUTACIONAL 60/4 B Eletivo

(Aproveitamento)

2018 - UFERSA

- METODOLOGIA CIENTIFICA 30/2 A Eletivo

(Aproveitamento)

2018 - UFERSA

- REDES DE COMPUTADORES 60/4 B Eletivo

(Aproveitamento)

2018 - UFERSA

- SISTEMAS DISTRIBUÍDOS 60/4 A Eletivo

(Aproveitamento)

2018 - UFERSA

Creditos de Disciplinas para Titulação (necessários/concluídos) - Obrigatórios: 2/2 Eletivos: 34/30 Total: 36/32

Resolução no. 32/17 - CEPE Conceito: A = Excelente (9.0 a 10.0) B = Muito Bom (8.0 a 8.9) C = Bom (7.0 a 7.9) D = Insuficiente (0.0 a 6.9)

Secretaria do Programa de Pós Graduação em

 INFORMÁTICA

Rua Cel. Francisco H. dos Santos, 100 - Centro Politécnico da UFPR - CURITIBA - Paraná - Brasil
CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br

https://www.prppg.ufpr.br/siga/visitante/autenticacao.jsp - Código para autenticação: lUTfrrG4E

	Introduction
	Background
	The von Neumann Architecture
	Memory Wall
	Single Instruction Multiple Data Instructions
	Near-Data Processing
	Bloom Filters

	VIMA: Vector Processing and Data Reuse Inside the Memory
	Overview
	Experimental Evaluation of VIMA

	Related Work
	Near-data Processing
	Bloom Filters
	String Matching Applications
	Hardware Implementations

	Proposal
	Hypothesis and Objectives
	Initial Design
	Research plan
	Proposed schedule
	Methodology
	Ordinary Computer Simulator (OrCS)
	Binary Generation

	REFERÊNCIAS

		2021-04-12T08:36:15-0300
	SAIRO RAONI DOS SANTOS:01433292432

		2021-04-12T08:36:43-0300
	SAIRO RAONI DOS SANTOS:01433292432

		2021-04-12T08:37:10-0300
	SAIRO RAONI DOS SANTOS:01433292432

		2021-04-12T08:38:11-0300
	SAIRO RAONI DOS SANTOS:01433292432

